Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering, Tsinghua University , Beijing 100084, China.
Chemistry Research Laboratory, Department of Chemistry, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K.
J Am Chem Soc. 2017 Apr 19;139(15):5494-5502. doi: 10.1021/jacs.7b01376. Epub 2017 Apr 5.
The search for active, stable, and cost-efficient electrocatalysts for hydrogen production via water splitting could make a substantial impact on energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high-surface-area carbon (RhP/C) by a facile solvo-thermal approach. The RhP/C NCs exhibit remarkable performance for hydrogen evolution reaction and oxygen evolution reaction compared to Rh/C and Pt/C catalysts. The atomic structure of the RhP NCs was directly observed by annular dark-field scanning transmission electron microscopy, which revealed a phosphorus-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorus plays a crucial role in determining the robust catalyst properties.
寻找高效、稳定且成本低廉的电催化剂以通过水分解来生产氢气,这将对不依赖化石燃料的能源技术产生重大影响。在此,我们通过简便的溶剂热法报告了以纳米立方体(NCs)形式分散在高比表面积碳(RhP/C)中的低金属负载量磷化铑电催化剂的合成。与 Rh/C 和 Pt/C 催化剂相比,RhP/C NCs 在析氢反应和析氧反应中表现出优异的性能。原子结构的 RhP NCs 通过环形暗场扫描透射电子显微镜直接观察到,揭示了富含磷的最外层原子层。结合实验和计算研究表明,表面磷在确定坚固的催化剂性能方面起着至关重要的作用。