Allouche Joachim, Chanéac Corinne, Brayner Roberta, Boissière Michel, Coradin Thibaud
Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Centre National de Recherche Scientifique (CNRS), Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254, Equipe de Chimie Physique (ECP), Technopôle Hélioparc Pau Pyrénées 2 avenue du Président Pierre Angot, PAU, 64053 Cedex 09, France.
Chimie de la Matière Condensée de Paris, UMR 7574, Université Pierre et Marie Curie, Bât F, 4 place Jussieu, and Collège de France, 11 place Marcelin Berthelot, Paris 75005, France.
Nanomaterials (Basel). 2014 Jul 31;4(3):612-627. doi: 10.3390/nano4030612.
The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.
首次通过纳米乳液途径,利用预先形成的磁铁矿纳米晶体的包封以及亚铁/铁离子的沉淀,将氧化铁胶体掺入明胶/二氧化硅杂化纳米颗粒中来设计磁性纳米颗粒。第一种方法得到的是含有有限数量且分散良好的磁铁矿胶体的双连续杂化纳米复合材料。相比之下,第二种方法可形成包含大量团聚氧化铁胶体的明胶 - 二氧化硅核壳纳米结构。两种磁性纳米复合材料都表现出相似的超顺磁行为。通过一种方法获得的纳米复合材料在溶液中表现出强烈的聚集倾向,而包封途径则允许对磁性纳米复合材料进行进一步的表面修饰,从而得到四元金/氧化铁/二氧化硅/明胶纳米颗粒。因此,纳米乳液、纳米结晶和溶胶 - 凝胶化学的这种首次合理结合使得能够制备多组分功能纳米材料。这在设计更复杂的生物纳米平台方面向前迈进了一步。