Suppr超能文献

用于监测网络的流导向主成分分析

Flow-directed PCA for monitoring networks.

作者信息

Gallacher K, Miller C, Scott E M, Willows R, Pope L, Douglass J

机构信息

School of Mathematics and Statistics University of Glasgow Glasgow U.K.

Evidence Directorate Environment Agency U.K.

出版信息

Environmetrics. 2017 Mar;28(2):e2434. doi: 10.1002/env.2434. Epub 2016 Dec 21.

Abstract

Measurements recorded over monitoring networks often possess spatial and temporal correlation inducing redundancies in the information provided. For river water quality monitoring in particular, flow-connected sites may likely provide similar information. This paper proposes a novel approach to principal components analysis to investigate reducing dimensionality for spatiotemporal flow-connected network data in order to identify common spatiotemporal patterns. The method is illustrated using monthly observations of total oxidized nitrogen for the Trent catchment area in England. Common patterns are revealed that are hidden when the river network structure and temporal correlation are not accounted for. Such patterns provide valuable information for the design of future sampling strategies.

摘要

在监测网络上记录的测量数据通常具有空间和时间相关性,从而导致所提供信息出现冗余。特别是对于河流水质监测而言,水流相连的站点可能会提供相似的信息。本文提出了一种主成分分析的新方法,用于研究降低时空水流相连网络数据的维度,以识别常见的时空模式。该方法通过对英格兰特伦特集水区总氧化氮的月度观测数据进行了说明。结果揭示了一些常见模式,而这些模式在不考虑河网结构和时间相关性时是隐藏的。这些模式为未来采样策略的设计提供了有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e45/5347935/001b470958d5/ENV-28-na-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验