Suppr超能文献

利用加权主成分分析追踪英国全国和地区 COVID-19 疫情状况。

Tracking the national and regional COVID-19 epidemic status in the UK using weighted principal component analysis.

机构信息

School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK.

Department of Statistics, London School of Economics and Poltical Science, London WC2B 4RR, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20210302. doi: 10.1098/rsta.2021.0302. Epub 2022 Aug 15.

Abstract

One of the difficulties in monitoring an ongoing pandemic is deciding on the metric that best describes its status when multiple intercorrelated measurements are available. Having a single measure, such as the effective reproduction number [Formula: see text], has been a simple and useful metric for tracking the epidemic and for imposing policy interventions to curb the increase when [Formula: see text]. While [Formula: see text] is easy to interpret in a fully susceptible population, it is more difficult to interpret for a population with heterogeneous prior immunity, e.g. from vaccination and prior infection. We propose an additional metric for tracking the UK epidemic that can capture the different spatial scales. These are the principal scores from a weighted principal component analysis. In this paper, we have used the methodology across the four UK nations and across the first two epidemic waves (January 2020-March 2021) to show that first principal score across nations and epidemic waves is a representative indicator of the state of the pandemic and is correlated with the trend in R. Hospitalizations are shown to be consistently representative; however, the precise dominant indicator, i.e. the principal loading(s) of the analysis, can vary geographically and across epidemic waves. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.

摘要

监测正在进行的大流行的困难之一是,当有多个相互关联的测量值时,决定哪种指标最能描述其状态。有效繁殖数[公式:见正文]等单一指标一直是跟踪疫情并在[公式:见正文]时采取政策干预措施抑制疫情上升的简单而有用的指标。虽然[公式:见正文]在完全易感人群中易于解释,但在具有异质先前免疫力的人群中(例如来自疫苗接种和先前感染),解释起来更加困难。我们提出了一个用于跟踪英国疫情的额外指标,可以捕捉不同的空间尺度。这些是加权主成分分析的主要得分。在本文中,我们在四个英国国家和前两个疫情波(2020 年 1 月至 2021 年 3 月)中使用了该方法,表明国家和疫情波之间的第一主得分是大流行状态的代表性指标,并且与 R 的趋势相关。住院治疗始终具有代表性;然而,确切的主导指标,即分析的主负荷,可以在地理上和整个疫情波中发生变化。本文是“现实生活中传染病模型的技术挑战及克服这些挑战的实例”主题问题的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1189/9376719/3cb123a257f3/rsta20210302f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验