Friebe Sebastian, Mundstock Alexander, Schneider Daniel, Caro Jürgen
Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hanover, Germany.
Faculty of Physics and Geoscience, University Leipzig, Linnéstraße 5, 04103, Leipzig, Germany.
Chemistry. 2017 May 11;23(27):6522-6526. doi: 10.1002/chem.201701266. Epub 2017 Apr 13.
The preparation and scalability of zeolite or metal organic framework (MOF) membranes remains a major challenge, and thus prevents the application of these materials in large-scale gas separation. Additionally, several zeolite or MOF materials are quite difficult or nearly impossible to grow as defect-free layers, and require expensive macroporous ceramic or polymer supports. Here, we present new self-supporting zeolite and MOF composite membranes, called Polymer-Stabilized Percolation Membranes (PSPMs), consisting of a pressed gas selective percolation network (in our case ZIF-8, NaX and MIL-140) and a gas-impermeable infiltrated epoxy resin for cohesion. We demonstrate the performance of these PSPMs by separating binary mixtures of H /CO and H /CH . We report the brickwork-like architecture featuring selective percolation pathways and the polymer as a stabilizer, compare the mechanical stability of said membranes with competing materials, and give an outlook on how economic these membranes may become.
沸石或金属有机骨架(MOF)膜的制备及可扩展性仍然是一个重大挑战,因此阻碍了这些材料在大规模气体分离中的应用。此外,几种沸石或MOF材料很难甚至几乎不可能生长成无缺陷层,并且需要昂贵的大孔陶瓷或聚合物支撑体。在此,我们展示了一种新型的自支撑沸石和MOF复合膜,称为聚合物稳定渗透膜(PSPM),它由压制的气体选择性渗透网络(在我们的案例中为ZIF-8、NaX和MIL-140)和用于粘结的气体不可渗透的渗透环氧树脂组成。我们通过分离H₂/CO₂和H₂/CH₄的二元混合物来展示这些PSPM的性能。我们报道了具有选择性渗透通道和作为稳定剂的聚合物的砖状结构,将所述膜与竞争材料的机械稳定性进行了比较,并展望了这些膜在经济上的可行性。