Suppr超能文献

用于上市后安全监测中不良事件信号检测的逻辑回归似然比检验分析

Logistic Regression Likelihood Ratio Test Analysis for Detecting Signals of Adverse Events in Post-market Safety Surveillance.

作者信息

Nam Kijoeng, Henderson Nicholas C, Rohan Patricia, Woo Emily Jane, Russek-Cohen Estelle

机构信息

a Merck Research Labs, Merck & Co., Inc, North Wales, Pennsylvania, USA.

b Department of Oncology, Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

J Biopharm Stat. 2017;27(6):990-1008. doi: 10.1080/10543406.2017.1295250. Epub 2017 Mar 27.

Abstract

The Vaccine Adverse Event Reporting System (VAERS) and other product surveillance systems compile reports of product-associated adverse events (AEs), and these reports may include a wide range of information including age, gender, and concomitant vaccines. Controlling for possible confounding variables such as these is an important task when utilizing surveillance systems to monitor post-market product safety. A common method for handling possible confounders is to compare observed product-AE combinations with adjusted baseline frequencies where the adjustments are made by stratifying on observable characteristics. Though approaches such as these have proven to be useful, in this article we propose a more flexible logistic regression approach which allows for covariates of all types rather than relying solely on stratification. Indeed, a main advantage of our approach is that the general regression framework provides flexibility to incorporate additional information such as demographic factors and concomitant vaccines. As part of our covariate-adjusted method, we outline a procedure for signal detection that accounts for multiple comparisons and controls the overall Type 1 error rate. To demonstrate the effectiveness of our approach, we illustrate our method with an example involving febrile convulsion, and we further evaluate its performance in a series of simulation studies.

摘要

疫苗不良事件报告系统(VAERS)和其他产品监测系统收集与产品相关的不良事件(AE)报告,这些报告可能包含广泛的信息,包括年龄、性别和同时接种的疫苗。在利用监测系统监测上市后产品安全性时,控制诸如此类可能的混杂变量是一项重要任务。处理可能的混杂因素的常用方法是将观察到的产品 - AE组合与调整后的基线频率进行比较,其中通过对可观察特征进行分层来进行调整。尽管诸如此类方法已被证明是有用的,但在本文中,我们提出一种更灵活的逻辑回归方法,该方法允许使用所有类型的协变量,而不是仅依赖分层。实际上,我们方法的一个主要优点是,通用回归框架提供了纳入诸如人口统计学因素和同时接种的疫苗等额外信息的灵活性。作为我们协变量调整方法的一部分,我们概述了一种信号检测程序,该程序考虑了多重比较并控制了总体I型错误率。为了证明我们方法的有效性,我们用一个涉及热性惊厥的例子来说明我们的方法,并在一系列模拟研究中进一步评估其性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验