Suppr超能文献

从临床试验中相关不良事件进行信号检测的有效方法。

Efficient methods for signal detection from correlated adverse events in clinical trials.

作者信息

Diao Guoqing, Liu Guanghan F, Zeng Donglin, Wang William, Tan Xianming, Heyse Joseph F, Ibrahim Joseph G

机构信息

Department of Statistics, George Mason University, Fairfax, Virginia.

Merck & Co., Inc., North Wales, Pennsylvania.

出版信息

Biometrics. 2019 Sep;75(3):1000-1008. doi: 10.1111/biom.13031. Epub 2019 Mar 29.

Abstract

It is an important and yet challenging task to identify true signals from many adverse events that may be reported during the course of a clinical trial. One unique feature of drug safety data from clinical trials, unlike data from post-marketing spontaneous reporting, is that many types of adverse events are reported by only very few patients leading to rare events. Due to the limited study size, the p-values of testing whether the rate is higher in the treatment group across all types of adverse events are in general not uniformly distributed under the null hypothesis that there is no difference between the treatment group and the placebo group. A consequence is that typically fewer than percent of the hypotheses are rejected under the null at the nominal significance level of . The other challenge is multiplicity control. Adverse events from the same body system may be correlated. There may also be correlations between adverse events from different body systems. To tackle these challenging issues, we develop Monte-Carlo-based methods for the signal identification from patient-reported adverse events in clinical trials. The proposed methodologies account for the rare events and arbitrary correlation structures among adverse events within and/or between body systems. Extensive simulation studies demonstrate that the proposed method can accurately control the family-wise error rate and is more powerful than existing methods under many practical situations. Application to two real examples is provided.

摘要

在临床试验过程中,从众多可能报告的不良事件中识别真正的信号是一项重要而又具有挑战性的任务。与上市后自发报告的数据不同,临床试验药物安全性数据的一个独特特征是,许多类型的不良事件仅由极少数患者报告,从而导致罕见事件。由于研究规模有限,在治疗组与安慰剂组无差异的零假设下,针对所有类型不良事件检验治疗组发生率是否更高的p值通常并非均匀分布。结果是,在名义显著性水平为 时,在零假设下通常只有不到 百分比的假设被拒绝。另一个挑战是多重性控制。来自同一身体系统的不良事件可能存在相关性。不同身体系统的不良事件之间也可能存在相关性。为解决这些具有挑战性的问题,我们开发了基于蒙特卡罗的方法,用于从临床试验中患者报告的不良事件中识别信号。所提出的方法考虑了罕见事件以及身体系统内和/或之间不良事件的任意相关结构。大量模拟研究表明,所提出的方法能够准确控制家族性错误率,并且在许多实际情况下比现有方法更具功效。还提供了两个实际例子的应用。

相似文献

1
Efficient methods for signal detection from correlated adverse events in clinical trials.
Biometrics. 2019 Sep;75(3):1000-1008. doi: 10.1111/biom.13031. Epub 2019 Mar 29.
2
Bayesian approach for clinical trial safety data using an Ising prior.
Biometrics. 2013 Sep;69(3):661-72. doi: 10.1111/biom.12051. Epub 2013 Jul 11.
4
A Bayesian meta-analytic approach for safety signal detection in randomized clinical trials.
Clin Trials. 2017 Apr;14(2):192-200. doi: 10.1177/1740774516683920. Epub 2017 Jan 6.
5
6
10
A nonparametric method to detect increased frequencies of adverse drug reactions over time.
Stat Med. 2018 Apr 30;37(9):1491-1514. doi: 10.1002/sim.7593. Epub 2018 Jan 10.

本文引用的文献

1
Fast approximation of small p-values in permutation tests by partitioning the permutations.
Biometrics. 2018 Mar;74(1):196-206. doi: 10.1111/biom.12731. Epub 2017 May 18.
2
Logistic Regression Likelihood Ratio Test Analysis for Detecting Signals of Adverse Events in Post-market Safety Surveillance.
J Biopharm Stat. 2017;27(6):990-1008. doi: 10.1080/10543406.2017.1295250. Epub 2017 Mar 27.
3
A Bayesian meta-analytic approach for safety signal detection in randomized clinical trials.
Clin Trials. 2017 Apr;14(2):192-200. doi: 10.1177/1740774516683920. Epub 2017 Jan 6.
5
Signal detection in FDA AERS database using Dirichlet process.
Stat Med. 2015 Aug 30;34(19):2725-42. doi: 10.1002/sim.6510. Epub 2015 Apr 29.
6
Evaluation of statistical methods for safety signal detection: a simulation study.
Pharm Stat. 2015 Jan-Feb;14(1):11-9. doi: 10.1002/pst.1652. Epub 2014 Oct 20.
7
Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.
Stat Methods Med Res. 2017 Feb;26(1):471-488. doi: 10.1177/0962280214549590. Epub 2016 Jul 11.
8
Likelihood ratio based tests for longitudinal drug safety data.
Stat Med. 2014 Jun 30;33(14):2408-24. doi: 10.1002/sim.6103. Epub 2014 Feb 9.
9
Bayesian methods for design and analysis of safety trials.
Pharm Stat. 2014 Jan-Feb;13(1):13-24. doi: 10.1002/pst.1586. Epub 2013 Jul 30.
10
Assessing genome-wide statistical significance for large p small n problems.
Genetics. 2013 Jul;194(3):781-3. doi: 10.1534/genetics.113.150896. Epub 2013 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验