Lapenna Domenico, Ciofani Giuliano, Obletter Gabriele
Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), Center of Excellence on Aging, Università degli Studi "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.
Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-MeT), Center of Excellence on Aging, Università degli Studi "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.
J Trace Elem Med Biol. 2017 May;41:111-118. doi: 10.1016/j.jtemb.2017.02.010. Epub 2017 Feb 20.
Iron-induced human LDL oxidation, which is relevant to atherosclerosis, has not yet been properly investigated. We addressed such issue using iron(II) and (III) basically in the presence of phosphates, which are present in vivo and influence iron oxidative properties, at pH 4.5 and 7.4, representative, respectively, of the lysosomal and plasma environment. In 10mM phosphate buffered saline (PBS), iron(II) induces substantial LDL oxidation at pH 4.5 at low micromolar concentrations, while at pH 7.4 has low oxidative effects; iron(III) promotes small LDL oxidation only at pH 4.5. In 10mM sodium acetate/NaCl buffer, pH 4.5, iron-induced LDL oxidation is far higher than in PBS, highlighting the relevance of phosphates in the inhibitory modulation of iron-induced LDL oxidation. LDL oxidation is related to iron binding to the protein and lipid moiety of LDL, and requires the presence of iron(II) bound to LDL together with iron(III). Chemical modification of LDL carboxyl groups, which could bind iron especially at pH 4.5, decreases significantly iron binding to LDL and iron-induced LDL oxidation. Hydroxyl radical scavengers are ineffective on iron-induced LDL oxidation, which is inhibited by metal chelation, scavengers of alkoxyl/peroxyl radicals, or removal of LDL lipid hydroperoxides (LOOH). Overall, substantial human LDL oxidation is induced LOOH-dependently by iron(II) at pH 4.5 even in the presence of phosphates, suggesting the occurrence of iron(II)-induced LDL oxidation in vivo within lysosomes, where pH is about 4.5, iron(II) and phosphates coexist, plasma with its antioxidants is absent, and glutathione peroxidase is poorly expressed resulting in LOOH accumulation.
铁诱导的人类低密度脂蛋白(LDL)氧化与动脉粥样硬化相关,但尚未得到充分研究。我们通过在pH值分别为4.5和7.4(分别代表溶酶体和血浆环境)的条件下,基本在存在磷酸盐(体内存在且影响铁的氧化特性)的情况下使用亚铁和铁离子来解决这一问题。在10mM磷酸盐缓冲盐水(PBS)中,亚铁在pH 4.5时以低微摩尔浓度就能诱导大量LDL氧化,而在pH 7.4时氧化作用较弱;铁离子仅在pH 4.5时促进少量LDL氧化。在10mM醋酸钠/氯化钠缓冲液(pH 4.5)中,铁诱导的LDL氧化远高于在PBS中的情况,突出了磷酸盐在抑制铁诱导的LDL氧化中的相关性。LDL氧化与铁结合到LDL的蛋白质和脂质部分有关,并且需要亚铁与LDL结合以及铁离子的存在。LDL羧基的化学修饰,尤其是在pH 4.5时能结合铁的修饰,会显著降低铁与LDL的结合以及铁诱导的LDL氧化。羟基自由基清除剂对铁诱导的LDL氧化无效,而金属螯合剂、烷氧基/过氧自由基清除剂或去除LDL脂质氢过氧化物(LOOH)可抑制这种氧化。总体而言,即使在存在磷酸盐的情况下,亚铁在pH 4.5时仍能通过依赖LOOH诱导大量人类LDL氧化,这表明在体内pH约为4.5、亚铁和磷酸盐共存、缺乏血浆抗氧化剂且谷胱甘肽过氧化物酶表达不佳导致LOOH积累的溶酶体内会发生亚铁诱导的LDL氧化。