Suppr超能文献

急性肾损伤并发急性肺损伤:内源性α-klotho缺乏与远隔器官功能障碍模型

Acute lung injury complicating acute kidney injury: A model of endogenous αKlotho deficiency and distant organ dysfunction.

作者信息

Hsia Connie C W, Ravikumar Priya, Ye Jianfeng

机构信息

Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, United States of America.

Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, United States of America; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, United States of America.

出版信息

Bone. 2017 Jul;100:100-109. doi: 10.1016/j.bone.2017.03.047. Epub 2017 Mar 24.

Abstract

The lung interfaces with atmospheric oxygen via a large surface area and is perfused by the entire venous return bearing waste products collected from the whole body. It is logical that the lung is endowed with generous anti-oxidative capacity derived both locally and from the circulation. The single-pass pleiotropic alpha-Klotho (αKlotho) protein was discovered when its genetic disruption led to premature multi-organ degeneration and early death. The extracellular domain of αKlotho is cleaved by secretases and released into circulation as endocrine soluble αKlotho protein, exerting wide-ranging cytoprotective effects including anti-oxidation on distant organs including the lung, which exhibits high sensitivity to circulating αKlotho insufficiency. Because circulating αKlotho is derived mainly from the kidney, acute kidney injury (AKI) leads to systemic αKlotho deficiency that in turn increases the risks of pulmonary complications, i.e., edema and inflammation, culminating in the acute respiratory distress syndrome. Exogenous αKlotho increases endogenous anti-oxidative capacity partly via activation of the Nrf2 pathway to protect lungs against injury caused by direct hyperoxia exposure or AKI. This article reviews the current knowledge of αKlotho antioxidation in the lung in the setting of AKI as a model of circulating αKlotho deficiency, an under-recognized condition that weakens innate cytoprotective defenses and contributes to the dysfunction in distant organs.

摘要

肺通过大面积与大气中的氧气进行气体交换,并接受来自全身的静脉回流血液灌注,这些血液携带着从全身收集的代谢废物。因此,肺具有强大的抗氧化能力,这种能力既源于局部,也来自循环系统,这是合乎逻辑的。单通道多效性α-klotho(αKlotho)蛋白是在其基因破坏导致过早的多器官退化和早期死亡时被发现的。αKlotho的细胞外结构域被分泌酶切割,作为内分泌可溶性αKlotho蛋白释放到循环系统中,对包括肺在内的远处器官发挥广泛的细胞保护作用,肺对循环中αKlotho不足表现出高度敏感性。由于循环中的αKlotho主要来源于肾脏,急性肾损伤(AKI)会导致全身αKlotho缺乏,进而增加肺部并发症(如水肿和炎症)的风险,最终导致急性呼吸窘迫综合征。外源性αKlotho部分通过激活Nrf2途径增加内源性抗氧化能力,以保护肺部免受直接高氧暴露或AKI所致的损伤。本文综述了以AKI作为循环αKlotho缺乏模型时,αKlotho在肺抗氧化方面的现有知识,这是一种未被充分认识的情况,它削弱了先天性细胞保护防御,并导致远处器官功能障碍。

相似文献

2
αKlotho deficiency in acute kidney injury contributes to lung damage.
J Appl Physiol (1985). 2016 Apr 1;120(7):723-32. doi: 10.1152/japplphysiol.00792.2015. Epub 2015 Dec 30.
4
αKlotho and Chronic Kidney Disease.
Vitam Horm. 2016;101:257-310. doi: 10.1016/bs.vh.2016.02.007. Epub 2016 Mar 24.
5
αKlotho Mitigates Progression of AKI to CKD through Activation of Autophagy.
J Am Soc Nephrol. 2016 Aug;27(8):2331-45. doi: 10.1681/ASN.2015060613. Epub 2015 Dec 23.
6
Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy.
Kidney Int. 2017 May;91(5):1104-1114. doi: 10.1016/j.kint.2016.10.034. Epub 2017 Jan 25.
7
Alpha-Klotho, a critical protein for lung health, is not expressed in normal lung.
FASEB Bioadv. 2019 Oct 29;1(11):675-687. doi: 10.1096/fba.2019-00016. eCollection 2019 Nov.
8
Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications.
Clin J Am Soc Nephrol. 2020 Dec 31;16(1):162-176. doi: 10.2215/CJN.02840320. Epub 2020 Jul 22.
9
Renal Production, Uptake, and Handling of Circulating αKlotho.
J Am Soc Nephrol. 2016 Jan;27(1):79-90. doi: 10.1681/ASN.2014101030. Epub 2015 May 14.
10
FGF23-αKlotho as a paradigm for a kidney-bone network.
Bone. 2017 Jul;100:4-18. doi: 10.1016/j.bone.2016.11.013. Epub 2016 Nov 12.

引用本文的文献

1
The association of serum klotho with pulmonary function among US adults: a cross-sectional study.
BMC Pulm Med. 2025 Jul 2;25(1):290. doi: 10.1186/s12890-025-03746-2.
2
Soft tissue calcifications in chronic kidney disease-beyond the vasculature.
Pflugers Arch. 2025 Jun 5. doi: 10.1007/s00424-025-03098-0.
3
Preeclampsia as a Study Model for Aging: The Klotho Gene Paradigm.
Int J Mol Sci. 2025 Jan 22;26(3):902. doi: 10.3390/ijms26030902.
4
Forecasting acute kidney injury and resource utilization in ICU patients using longitudinal, multimodal models.
J Biomed Inform. 2024 Jun;154:104648. doi: 10.1016/j.jbi.2024.104648. Epub 2024 Apr 30.
5
Forecasting Acute Kidney Injury and Resource Utilization in ICU patients using longitudinal, multimodal models.
medRxiv. 2024 Mar 15:2024.03.14.24304230. doi: 10.1101/2024.03.14.24304230.
6
The Neglected Price of Pediatric Acute Kidney Injury: Non-renal Implications.
Front Pediatr. 2022 Jun 30;10:893993. doi: 10.3389/fped.2022.893993. eCollection 2022.
8
Two to Tango: Kidney-Lung Interaction in Acute Kidney Injury and Acute Respiratory Distress Syndrome.
Front Pediatr. 2021 Oct 18;9:744110. doi: 10.3389/fped.2021.744110. eCollection 2021.
9
Constitutive transgenic α-Klotho overexpression enhances resilience to and recovery from murine acute lung injury.
Am J Physiol Lung Cell Mol Physiol. 2021 Oct 1;321(4):L736-L749. doi: 10.1152/ajplung.00629.2020. Epub 2021 Aug 4.
10
Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance.
NPJ Digit Med. 2020 Oct 26;3:139. doi: 10.1038/s41746-020-00346-8. eCollection 2020.

本文引用的文献

1
Redox mechanisms in age-related lung fibrosis.
Redox Biol. 2016 Oct;9:67-76. doi: 10.1016/j.redox.2016.06.005. Epub 2016 Jun 25.
2
The Role of Alpha-Klotho as a Universal Tumor Suppressor.
Vitam Horm. 2016;101:197-214. doi: 10.1016/bs.vh.2016.03.001. Epub 2016 Apr 6.
3
1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age.
Vitam Horm. 2016;100:165-230. doi: 10.1016/bs.vh.2015.11.005. Epub 2016 Jan 13.
4
Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2 D in macrophages.
FEBS Lett. 2016 Jan;590(1):53-67. doi: 10.1002/1873-3468.12040. Epub 2016 Jan 9.
5
αKlotho deficiency in acute kidney injury contributes to lung damage.
J Appl Physiol (1985). 2016 Apr 1;120(7):723-32. doi: 10.1152/japplphysiol.00792.2015. Epub 2015 Dec 30.
6
αKlotho Mitigates Progression of AKI to CKD through Activation of Autophagy.
J Am Soc Nephrol. 2016 Aug;27(8):2331-45. doi: 10.1681/ASN.2015060613. Epub 2015 Dec 23.
7
Nanoparticle facilitated inhalational delivery of erythropoietin receptor cDNA protects against hyperoxic lung injury.
Nanomedicine. 2016 Apr;12(3):811-821. doi: 10.1016/j.nano.2015.10.004. Epub 2015 Oct 27.
9
Klotho, stem cells, and aging.
Clin Interv Aging. 2015 Aug 4;10:1233-43. doi: 10.2147/CIA.S84978. eCollection 2015.
10
Klotho: a tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma.
Lab Invest. 2016 Feb;96(2):197-205. doi: 10.1038/labinvest.2015.86. Epub 2015 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验