Ithychanda Sujay S, Dou Kevin, Robertson Stephen P, Qin Jun
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand.
J Biol Chem. 2017 May 19;292(20):8390-8400. doi: 10.1074/jbc.M117.776740. Epub 2017 Mar 27.
Filamin-mediated linkages between transmembrane receptors (TR) and the actin cytoskeleton are crucial for regulating many cytoskeleton-dependent cellular processes such as cell shape change and migration. A major TR binding site in the immunoglobulin repeat 21 (Ig21) of filamin is masked by the adjacent repeat Ig20, resulting in autoinhibition. The TR binding to this site triggers the relief of Ig20 and protein kinase A (PKA)-mediated phosphorylation of Ser-2152, thereby dynamically regulating the TR-actin linkages. A P2204L mutation in Ig20 reportedly cause frontometaphyseal dysplasia, a skeletal disorder with unknown pathogenesis. We show here that the P2204L mutation impairs a hydrophobic core of Ig20, generating a conformationally fluctuating molten globule-like state. Consequently, unlike in WT filamin, where PKA-mediated Ser-2152 phosphorylation is ligand-dependent, the P2204L mutant is readily accessible to PKA, promoting ligand-independent phosphorylation on Ser-2152. Strong TR peptide ligands from platelet GP1bα and G-protein-coupled receptor MAS effectively bound Ig21 by displacing Ig20 from autoinhibited WT filamin, but surprisingly, the capacity of these ligands to bind the P2204L mutant was much reduced despite the mutation-induced destabilization of the Ig20 structure that supposedly weakens the autoinhibition. Thermodynamic analysis indicated that compared with WT filamin, the conformationally fluctuating state of the Ig20 mutant makes Ig21 enthalpically favorable to bind ligand but with substantial entropic penalty, resulting in total higher free energy and reduced ligand affinity. Overall, our results reveal an unusual structural and thermodynamic basis for the P2204L-induced dysfunction of filamin and frontometaphyseal dysplasia disease.
细丝蛋白介导的跨膜受体(TR)与肌动蛋白细胞骨架之间的连接对于调节许多依赖细胞骨架的细胞过程至关重要,如细胞形状变化和迁移。细丝蛋白免疫球蛋白重复序列21(Ig21)中的一个主要TR结合位点被相邻的重复序列Ig20掩盖,导致自身抑制。TR与该位点的结合触发Ig20的释放以及蛋白激酶A(PKA)介导的丝氨酸2152的磷酸化,从而动态调节TR-肌动蛋白连接。据报道,Ig20中的P2204L突变会导致额骨干骺端发育异常,这是一种发病机制不明的骨骼疾病。我们在此表明,P2204L突变破坏了Ig20的疏水核心,产生了一种构象波动的类熔球状态。因此,与野生型细丝蛋白不同,野生型细丝蛋白中PKA介导的丝氨酸2152磷酸化是依赖配体的,而P2204L突变体很容易被PKA作用,促进丝氨酸2152的非配体依赖性磷酸化。来自血小板糖蛋白1bα和G蛋白偶联受体MAS的强TR肽配体通过将Ig20从自身抑制的野生型细丝蛋白中置换出来,有效地结合了Ig21,但令人惊讶的是,尽管突变导致Ig20结构不稳定,据推测这会削弱自身抑制,但这些配体与P2204L突变体结合的能力却大大降低。热力学分析表明,与野生型细丝蛋白相比,Ig20突变体的构象波动状态使Ig21在焓上有利于结合配体,但有很大的熵罚,导致总自由能更高且配体亲和力降低。总体而言,我们的结果揭示了P2204L诱导的细丝蛋白功能障碍和额骨干骺端发育异常疾病的异常结构和热力学基础。