Seppälä Jonne, Tossavainen Helena, Rodic Nebojsa, Permi Perttu, Pentikäinen Ulla, Ylänne Jari
Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
PLoS One. 2015 Aug 31;10(8):e0136969. doi: 10.1371/journal.pone.0136969. eCollection 2015.
Filamins (FLNs) are large, multidomain actin cross-linking proteins with diverse functions. Besides regulating the actin cytoskeleton, they serve as important links between the extracellular matrix and the cytoskeleton by binding cell surface receptors, functioning as scaffolds for signaling proteins, and binding several other cytoskeletal proteins that regulate cell adhesion dynamics. Structurally, FLNs are formed of an amino terminal actin-binding domain followed by 24 immunoglobulin-like domains (IgFLNs). Recent studies have demonstrated that myosin-mediated contractile forces can reveal hidden protein binding sites in the domain pairs IgFLNa18-19 and 20-21, enabling FLNs to transduce mechanical signals in cells. The atomic structures of these mechanosensor domain pairs in the resting state are known, as well as the structures of individual IgFLN21 with ligand peptides. However, little experimental data is available on how interacting protein binding deforms the domain pair structures. Here, using small-angle x-ray scattering-based modelling, x-ray crystallography, and NMR, we show that the adaptor protein migfilin-derived peptide-bound structure of IgFLNa20-21 is flexible and adopts distinctive conformations depending on the presence or absence of the interacting peptide. The conformational changes reported here may be common for all peptides and may play a role in the mechanosensor function of the site.
细丝蛋白(FLNs)是一类大型的、具有多种功能的多结构域肌动蛋白交联蛋白。除了调节肌动蛋白细胞骨架外,它们还通过结合细胞表面受体,作为信号蛋白的支架,并结合其他几种调节细胞黏附动力学的细胞骨架蛋白,从而在细胞外基质和细胞骨架之间起到重要的连接作用。在结构上,FLNs由一个氨基末端肌动蛋白结合结构域和随后的24个免疫球蛋白样结构域(IgFLNs)组成。最近的研究表明,肌球蛋白介导的收缩力可以揭示结构域对IgFLNa18 - 19和20 - 21中隐藏的蛋白质结合位点,使FLNs能够在细胞中传递机械信号。这些机械传感器结构域对在静止状态下的原子结构是已知的,单个IgFLN21与配体肽的结构也是已知的。然而,关于相互作用的蛋白质结合如何使结构域对结构变形的实验数据很少。在这里,我们使用基于小角X射线散射的建模、X射线晶体学和核磁共振技术,表明IgFLNa20 - 21与衔接蛋白migfilin衍生肽结合的结构是灵活的,并且根据相互作用肽的存在与否采用不同的构象。这里报道的构象变化可能对所有肽来说都是常见的,并且可能在该位点的机械传感器功能中发挥作用。