Suppr超能文献

机械力调节细菌黏附素中硫酯键的反应活性。

Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin.

作者信息

Echelman Daniel J, Lee Alex Q, Fernández Julio M

机构信息

From the Department of Biological Sciences, Columbia University, New York, New York 10027

From the Department of Biological Sciences, Columbia University, New York, New York 10027.

出版信息

J Biol Chem. 2017 May 26;292(21):8988-8997. doi: 10.1074/jbc.M117.777466. Epub 2017 Mar 27.

Abstract

Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of , we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.

摘要

细菌在粘附和定殖于宿主时必须承受巨大的机械剪切力。最近对一类革兰氏阳性菌粘附素的结构研究揭示了一种分子内的半胱氨酸 - 谷氨酰胺硫酯键,它可以与表面相关配体反应,从而共价锚定在宿主表面。这种内部硫酯键的另外两个例子出现在某些抗蛋白酶和免疫补体系统中,这两者都只有在硫酯键通过蛋白水解切割暴露后才与配体反应。我们推测细菌粘附过程中的机械力可能类似于这种蛋白水解门控作用来调节硫酯与配体的反应活性。通过研究肺炎链球菌的菌毛尖端粘附素Spy0125,我们开发了一种单分子检测方法来明确解析硫酯键的状态。我们发现,当Spy0125处于折叠状态时,其硫酯键可以被小分子亲核试剂甲胺和组胺切割,但当Spy0125被机械展开并受到50 - 350皮牛顿的力时,不再观察到硫酯切割。对于未暴露于机械力的折叠Spy0125,硫酯切割与硫酯自发重新形成处于平衡状态,其半衰期为几分钟。在功能上,这种平衡反应性使含硫酯的粘附素能够对潜在底物进行采样,而不会发生不可逆的切割和失活。我们提出,这种可逆的硫酯反应性将规避潜在的可溶性抑制剂,如在炎症部位释放的组胺,并使细菌粘附素能够选择性地与表面结合的配体结合。

相似文献

1
Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin.
J Biol Chem. 2017 May 26;292(21):8988-8997. doi: 10.1074/jbc.M117.777466. Epub 2017 Mar 27.
3
Protein folding modulates the chemical reactivity of a Gram-positive adhesin.
Nat Chem. 2021 Feb;13(2):172-181. doi: 10.1038/s41557-020-00586-x. Epub 2020 Nov 30.
4
Structural model for covalent adhesion of the Streptococcus pyogenes pilus through a thioester bond.
J Biol Chem. 2014 Jan 3;289(1):177-89. doi: 10.1074/jbc.M113.523761. Epub 2013 Nov 12.
5
Smart superglue in streptococci? The proof is in the pulling.
J Biol Chem. 2017 May 26;292(21):8998-8999. doi: 10.1074/jbc.H117.777466.
6
A highly unusual thioester bond in a pilus adhesin is required for efficient host cell interaction.
J Biol Chem. 2010 Oct 29;285(44):33858-66. doi: 10.1074/jbc.M110.149385. Epub 2010 Aug 19.
7
Structural and functional analysis of the fibronectin-binding protein FNE from Streptococcus equi spp. equi.
FEBS J. 2014 Dec;281(24):5513-31. doi: 10.1111/febs.13092. Epub 2014 Nov 4.
8
Roles of minor pilin subunits Spy0125 and Spy0130 in the serotype M1 Streptococcus pyogenes strain SF370.
J Bacteriol. 2010 Sep;192(18):4651-9. doi: 10.1128/JB.00071-10. Epub 2010 Jul 16.
9
Molecular strategy for blocking isopeptide bond formation in nascent pilin proteins.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9222-9227. doi: 10.1073/pnas.1807689115. Epub 2018 Aug 27.
10
Interfering with the Folding of Group A Streptococcal pili Proteins.
Methods Mol Biol. 2020;2136:347-364. doi: 10.1007/978-1-0716-0467-0_28.

引用本文的文献

2
Dynamic Covalent Hydrogels: Strong yet Dynamic.
Gels. 2022 Sep 10;8(9):577. doi: 10.3390/gels8090577.
3
The molecular mechanisms underlying mussel adhesion.
Nanoscale Adv. 2019 Oct 10;1(11):4246-4257. doi: 10.1039/c9na00582j. eCollection 2019 Nov 5.
4
Protein nanomechanics in biological context.
Biophys Rev. 2021 Aug 7;13(4):435-454. doi: 10.1007/s12551-021-00822-9. eCollection 2021 Aug.
5
An ester bond underlies the mechanical strength of a pathogen surface protein.
Nat Commun. 2021 Aug 23;12(1):5082. doi: 10.1038/s41467-021-25425-6.
6
Protein folding modulates the chemical reactivity of a Gram-positive adhesin.
Nat Chem. 2021 Feb;13(2):172-181. doi: 10.1038/s41557-020-00586-x. Epub 2020 Nov 30.
7
Binding Strength of Gram-Positive Bacterial Adhesins.
Front Microbiol. 2020 Jun 25;11:1457. doi: 10.3389/fmicb.2020.01457. eCollection 2020.
8
Calcium stabilizes the strongest protein fold.
Nat Commun. 2018 Nov 12;9(1):4764. doi: 10.1038/s41467-018-07145-6.
9
A new structural class of bacterial thioester domains reveals a slipknot topology.
Protein Sci. 2018 Sep;27(9):1651-1660. doi: 10.1002/pro.3478. Epub 2018 Sep 25.
10
Disruption of staphylococcal aggregation protects against lethal lung injury.
J Clin Invest. 2018 Mar 1;128(3):1074-1086. doi: 10.1172/JCI95823. Epub 2018 Feb 12.

本文引用的文献

1
A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics.
J Am Chem Soc. 2016 Aug 24;138(33):10546-53. doi: 10.1021/jacs.6b05429. Epub 2016 Aug 9.
2
Catch-bond mechanism of the bacterial adhesin FimH.
Nat Commun. 2016 Mar 7;7:10738. doi: 10.1038/ncomms10738.
3
CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks.
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2490-5. doi: 10.1073/pnas.1522946113. Epub 2016 Feb 16.
4
Work Done by Titin Protein Folding Assists Muscle Contraction.
Cell Rep. 2016 Feb 16;14(6):1339-1347. doi: 10.1016/j.celrep.2016.01.025. Epub 2016 Feb 4.
5
Disulfide-Bond-Forming Pathways in Gram-Positive Bacteria.
J Bacteriol. 2015 Dec 7;198(5):746-54. doi: 10.1128/JB.00769-15.
6
Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.
Biochem Soc Trans. 2015 Oct;43(5):787-94. doi: 10.1042/BST20150066.
7
Structural and functional insights into Escherichia coli α2-macroglobulin endopeptidase snap-trap inhibition.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8290-5. doi: 10.1073/pnas.1506538112. Epub 2015 Jun 22.
9
Monitoring Oxidative Folding of a Single Protein Catalyzed by the Disulfide Oxidoreductase DsbA.
J Biol Chem. 2015 Jun 5;290(23):14518-27. doi: 10.1074/jbc.M115.646000. Epub 2015 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验