Seydlova Gabriela, Beranova Jana, Bibova Ilona, Dienstbier Ana, Drzmisek Jakub, Masin Jiri, Fiser Radovan, Konopasek Ivo, Vecerek Branislav
From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic.
the Laboratories of Post-transcriptional Control of Gene Expression and.
J Biol Chem. 2017 May 12;292(19):8048-8058. doi: 10.1074/jbc.M117.781559. Epub 2017 Mar 27.
Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens and Although represents a pathogen strictly adapted to the human body temperature, causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with Remarkably, maintained the production of virulence factors at 24 °C, whereas cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between and may result from selective adaptation of to the human host. We propose that the reduced plasticity of the membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease.
环境温度的变化是微生物面临的主要压力之一,因为它们会影响细胞质膜的功能。在本研究中,我们分析了两种密切相关的呼吸道病原体的热适应性。虽然[病原体名称1]是一种严格适应人体体温的病原体,但[病原体名称2]能在多种动物中引起感染,并且在宿主体外也能存活。我们应用气相色谱 - 质谱联用(GC-MS)来测定两种病原体在不同温度下生长时的脂肪酸,并通过荧光各向异性测量分析膜流动性。同时,我们还监测了生长温度变化对几种毒力因子表达和产生的影响。与[病原体名称2]相比,在低温响应时,[病原体名称1]对其脂肪酸组成和膜流动性的适应性要小得多。值得注意的是,[病原体名称1]在24°C时维持毒力因子的产生,而[病原体名称2]的细胞只有在温度升至37°C时才恢复毒力因子的产生。这种与生长温度相关的毒力因子产生的差异调节与转录调节因子BvgA的磷酸化状态有关。[病原体名称1]和[病原体名称2]在低温适应性上观察到的差异可能是由于[病原体名称1]对人类宿主的选择性适应所致。我们认为,[病原体名称1]膜的可塑性降低确保了在次优温度下毒力因子的持续产生,并且可能在疾病传播中起重要作用。