Suppr超能文献

多元计数数据的回归模型

Regression Models For Multivariate Count Data.

作者信息

Zhang Yiwen, Zhou Hua, Zhou Jin, Sun Wei

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203.

Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095-1772.

出版信息

J Comput Graph Stat. 2017;26(1):1-13. doi: 10.1080/10618600.2016.1154063. Epub 2017 Feb 16.

Abstract

Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

摘要

具有多元计数响应的数据在现代应用中经常出现。常用的多项逻辑回归模型由于其受限的均值 - 方差结构而具有局限性。例如,用多项逻辑回归模型分析来自最新RNA测序技术的计数数据会在假设检验中导致严重错误。多元计数中过度离散和复杂相关结构的普遍存在需要更灵活的回归模型。在本文中,我们研究了一些纳入计数之间各种相关结构的广义线性模型。当前文献缺乏对这些模型的处理,部分原因是它们不属于自然指数族。我们在一个统一的框架中研究这些模型的估计、检验和变量选择。在合成数据和真实RNA测序数据上对回归模型进行了比较。

相似文献

1
Regression Models For Multivariate Count Data.多元计数数据的回归模型
J Comput Graph Stat. 2017;26(1):1-13. doi: 10.1080/10618600.2016.1154063. Epub 2017 Feb 16.
6

引用本文的文献

4
Deciphering the 'gut-brain axis' through microbiome diversity.通过微生物群落多样性解读“肠-脑轴”
Gen Psychiatr. 2023 Oct 29;36(5):e101090. doi: 10.1136/gpsych-2023-101090. eCollection 2023.
5
Statistical Picking of Multivariate Waveforms.多元波形的统计选择。
Sensors (Basel). 2022 Dec 8;22(24):9636. doi: 10.3390/s22249636.
7
Multivariate Analysis and Modelling of multiple Brain endOphenotypes: Let's MAMBO!多种脑内表型的多变量分析与建模:让我们行动起来!
Comput Struct Biotechnol J. 2021 Oct 13;19:5800-5810. doi: 10.1016/j.csbj.2021.10.019. eCollection 2021.

本文引用的文献

4
EM vs MM: A Case Study.实体显微镜检查与体视显微镜检查:一个案例研究。
Comput Stat Data Anal. 2012 Dec;56(12):3909-3920. doi: 10.1016/j.csda.2012.05.018.
6
Differential expression analysis for sequence count data.差异表达分析序列计数数据。
Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106. Epub 2010 Oct 27.
7
MM Algorithms for Some Discrete Multivariate Distributions.某些离散多元分布的MM算法
J Comput Graph Stat. 2010 Sep 1;19(3):645-665. doi: 10.1198/jcgs.2010.09014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验