结合临床数据与机械描述符的心脏不同步严重程度自动分类
Automated Classification of Severity in Cardiac Dyssynchrony Merging Clinical Data and Mechanical Descriptors.
作者信息
Santos-Díaz Alejandro, Valdés-Cristerna Raquel, Vallejo Enrique, Hernández Salvador, Jiménez-Ángeles Luis
机构信息
Bioengineering Department, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, Mexico City, Mexico.
Neuroimaging Laboratory, Electrical Engineering Department, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.
出版信息
Comput Math Methods Med. 2017;2017:3087407. doi: 10.1155/2017/3087407. Epub 2017 Feb 19.
Cardiac resynchronization therapy (CRT) improves functional classification among patients with left ventricle malfunction and ventricular electric conduction disorders. However, a high percentage of subjects under CRT (20%-30%) do not show any improvement. Nonetheless the presence of mechanical contraction dyssynchrony in ventricles has been proposed as an indicator of CRT response. This work proposes an automated classification model of severity in ventricular contraction dyssynchrony. The model includes clinical data such as left ventricular ejection fraction (LVEF), QRS and P-R intervals, and the 3 most significant factors extracted from the factor analysis of dynamic structures applied to a set of equilibrium radionuclide angiography images representing the mechanical behavior of cardiac contraction. A control group of 33 normal volunteers (28 ± 5 years, LVEF of 59.7% ± 5.8%) and a HF group of 42 subjects (53.12 ± 15.05 years, LVEF < 35%) were studied. The proposed classifiers had hit rates of 90%, 50%, and 80% to distinguish between absent, mild, and moderate-severe interventricular dyssynchrony, respectively. For intraventricular dyssynchrony, hit rates of 100%, 50%, and 90% were observed distinguishing between absent, mild, and moderate-severe, respectively. These results seem promising in using this automated method for clinical follow-up of patients undergoing CRT.
心脏再同步治疗(CRT)可改善左心室功能不全和心室电传导障碍患者的功能分级。然而,接受CRT治疗的患者中有很高比例(20%-30%)并未显示出任何改善。尽管如此,心室机械收缩不同步的存在已被提议作为CRT反应的一个指标。这项工作提出了一种心室收缩不同步严重程度的自动分类模型。该模型包括临床数据,如左心室射血分数(LVEF)、QRS和P-R间期,以及从应用于一组代表心脏收缩力学行为的平衡放射性核素血管造影图像的动态结构因子分析中提取的3个最重要因素。研究了一个由33名正常志愿者组成的对照组(年龄28±5岁,LVEF为59.7%±5.8%)和一个由42名受试者组成的心力衰竭组(年龄53.12±15.05岁,LVEF<35%)。所提出的分类器区分无、轻度和中度-重度心室间不同步的命中率分别为90%、50%和80%。对于心室内不同步,区分无、轻度和中度-重度的命中率分别为100%、50%和90%。这些结果对于使用这种自动方法对接受CRT治疗的患者进行临床随访似乎很有前景。
相似文献
Comput Math Methods Med. 2017
JACC Cardiovasc Imaging. 2011-10
引用本文的文献
本文引用的文献
Arrhythm Electrophysiol Rev. 2015-8
Curr Cardiol Rep. 2016-1