Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden.
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden; Genome-Scale Biology Research Program, P.O. Box 63, FI-00014 University of Helsinki, Finland.
Curr Opin Struct Biol. 2017 Dec;47:1-8. doi: 10.1016/j.sbi.2017.03.006. Epub 2017 Mar 24.
In prokaryotes, individual transcription factors (TFs) can recognize long DNA motifs that are alone sufficient to define the genes that they induce or repress. In contrast, in higher organisms that have larger genomes, TFs recognize sequences that are too short to define unique genomic positions. In addition, development of multicellular organisms requires molecular systems that are capable of executing combinatorial logical operations. Co-operative recognition of DNA by multiple TFs allows both definition of unique genomic positions in large genomes, and complex information processing at the level of individual regulatory elements. The TFs can co-operate in multiple different ways, and the precise mechanism used for co-operation determines important features of the regulatory interactions. Here, we present an overview of the structural basis of the different mechanisms by which TFs can cooperate, focusing on insight from recent functional studies and structural analyses of specific TF-TF-DNA complexes.
在原核生物中,单个转录因子 (TF) 可以识别足够长的 DNA 基序,这些基序本身足以定义它们诱导或抑制的基因。相比之下,在基因组较大的高等生物中,TF 识别的序列太短,无法定义独特的基因组位置。此外,多细胞生物的发育需要能够执行组合逻辑运算的分子系统。多个 TF 对 DNA 的协同识别允许在大型基因组中定义独特的基因组位置,并在单个调节元件的水平上进行复杂的信息处理。TF 可以以多种不同的方式协同作用,协同作用的确切机制决定了调节相互作用的重要特征。在这里,我们概述了 TF 可以协同作用的不同机制的结构基础,重点介绍了来自最近的功能研究和特定 TF-TF-DNA 复合物的结构分析的见解。