Suppr超能文献

Epigenetic Status of H19-Igf2 Imprinted Genes and Loss of 5-Hydroxymethylcytosine in the Brain of Cloned Goats.

作者信息

Deng Mingtian, Ren Caifang, Liu Zifei, Zhang Guomin, Wang Feng, Wan Yongjie

机构信息

Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China.

出版信息

Cell Reprogram. 2017 Jun;19(3):199-207. doi: 10.1089/cell.2016.0049. Epub 2017 Mar 28.

Abstract

In mammals, the imprinted genes play vital roles in development and are generally controlled by DNA methylation at imprinting control regions (ICRs). Recently, it was discovered that 5-hydroxymethylcytosine (5-hmC) is a stable epigenetic modification; however, its functions in cloned animal genomes have not yet been fully elucidated. In this study, we interrogated and quantified the 5-hmC levels in the brain of cloned goats and discovered upregulation of Uhrf1 (p < 0.001), Dnmt1 (p < 0.05), Dnmt3a (p < 0.05), Igf2 (p < 0.01), and H19 (p < 0.05) and downregulation of Dnmt3b (p < 0.001), Tet1 (p < 0.001), Tet2 (p < 0.05), Tet3 (p < 0.001), Mecp2 (p < 0.05), and Igf2r (p < 0.05) in deceased cloned goat tissues compared with the normal controls. We demonstrated that DNA methylation was increased at H19 ICR (51.33% ± 2.03% vs. 93.07% ± 3.06%; p < 0.01) and that DNA was hypomethylated at Igf2 ICR (4.57% ± 1.48% vs. 7.63% ± 1.83%; p > 0.05) in the brain of deceased cloned goats. Finally, we showed that within the cloned goat brain genome, the amount of genome-wide 5-hmC was significantly decreased (0.083% ± 0.026% vs. 0.024% ± 0.007%; p < 0.05), whereas the 5-hmC levels within H19 and Igf2 CCGG sites were not significantly altered (0.17% ± 0.09% vs. 0.03% ± 0.01%; p > 0.05) in the brain of deceased cloned goats. Our data bring further experimental evidence regarding the abnormalities in 5-hmC and advance our current understanding of the role of 5-hmC in cloned animals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验