Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2425 rue de l'Agriculture, Ville de Québec, Québec, G1V 0A6, Canada; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 avenue Albert Einstein, Villeurbanne F-69622, France; Institut de Recherche et de Développement en Agroenvironnement, 2700 rue Einstein, Ville de Québec, Québec G1P 3W8, Canada.
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 avenue Albert Einstein, Villeurbanne F-69622, France.
Sci Total Environ. 2017 Sep 1;593-594:406-417. doi: 10.1016/j.scitotenv.2017.03.119. Epub 2017 Mar 27.
Torrefaction is proposed as a valorization process for non recycled cardboard. Torrefied cardboard was physically and chemically characterized and it was proposed for energy production and methane adsorption. The surface area and pore volume obtained were among 3.0-6.0m/g and 5.7·10-2.3·10cm/g, respectively. The carbon content increased with temperature and residence time of torrefaction. Oxidation kinetics of torrefied cardboard at different temperatures (250-300°C) and at different plateaus (60-120min) were tested. Torrefied cardboard was chemically treated with KOH in order to study the effect of K on thermal oxidation kinetics. It was observed that high torrefaction temperatures and residence times lead to a more stable char. Furthermore, kinetic parameters were obtained by iso-conversional methods and Coats and Redfern method. Attending to iso-conversional method, a decrease of E was observed with both, temperature and residence time of torrefaction. Whereas chemically treated presented highest E values than torrefied cardboard. In addition, regarding Coats and Redfern method, the oxidation model was not highly modified by torrefaction temperature and residence time. However, for chemically treated samples the oxidation model was modified by K presence. Finally, CH adsorption capacity of torrefied cardboard was studied at 30°C and atmospheric pressure. CH partial pressures tested were lower than 0.45kPa. It was observed that CH adsorption capacity increased with torrefaction time and decreased with chemical treatment. Thus, for the tested samples, the highest adsorption capacity observed was 5.70mgCH/g of sample.
热解被提议作为一种非回收纸板的增值处理方法。对热解后的纸板进行了物理和化学特性分析,并提出将其用于能源生产和甲烷吸附。所获得的比表面积和孔体积分别在 3.0-6.0m/g 和 5.7·10-2.3·10cm/g 之间。碳含量随热解温度和停留时间的增加而增加。在不同温度(250-300°C)和不同平台(60-120min)下测试了热解纸板的氧化动力学。为了研究 K 对热氧化动力学的影响,用 KOH 对热解纸板进行了化学处理。结果表明,较高的热解温度和停留时间导致更稳定的炭。此外,通过等转化率法和 Coats 和 Redfern 法获得了动力学参数。根据等转化率法,E 值随热解温度和停留时间的升高而降低。而经化学处理的样品的 E 值高于热解纸板。此外,对于 Coats 和 Redfern 法,氧化模型没有因热解温度和停留时间而发生很大改变。然而,对于经过化学处理的样品,氧化模型因 K 的存在而发生改变。最后,在 30°C 和大气压下研究了热解纸板的 CH 吸附容量。测试的 CH 分压低于 0.45kPa。结果表明,CH 吸附容量随热解时间的增加而增加,随化学处理的增加而减少。因此,在所测试的样品中,观察到的最高吸附容量为 5.70mgCH/g 样品。