Edelmann Elke, Cepeda-Prado Efrain, Leßmann Volkmar
Institute of Physiology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke UniversityMagdeburg, Germany.
Institute of Physiology, Otto-von-Guericke University Magdeburg, Germany.
Front Synaptic Neurosci. 2017 Mar 14;9:7. doi: 10.3389/fnsyn.2017.00007. eCollection 2017.
Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation . Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the brain. We hypothesize that resolving the subcellular location of t-LTP and t-LTD mechanisms that are regulated by distinct neuromodulator systems will be essential to reach a more cohesive understanding of synaptic plasticity in memory formation.
理解学习和记忆机制是神经科学的一个重要目标。为了深入了解记忆形成的潜在细胞机制,人们运用各种技术在不同脑区研究突触可塑性过程。用于仔细研究增强或减弱突触传递的不同方法的一个有效模型是记录长时程增强(LTP)或长时程抑制(LTD)。在单细胞水平上,尖峰时间依赖性可塑性(STDP)协议已成为一种强大的工具,可通过在记忆形成过程中可能也会出现的刺激范式来研究突触可塑性。这种可塑性可由具有多个重复次数和刺激模式的不同STDP范式诱导产生。它们随后会募集或激活不同的分子途径和神经调质,以实现STDP的诱导和表达。多巴胺(DA)和脑源性神经营养因子(BDNF)最近已被证明是海马体中谢弗侧支(SC)-CA1突触处海马体STDP的重要调节因子,并且仅由可区分的STDP范式激活。给定神经元中不同类型的平行突触可塑性取决于特定的亚细胞分子前提条件。由于已知CA1锥体神经元的基底树突和顶端树突是异质的,并且描述了特定受体和离子通道的距离依赖性树突梯度,因此树突可能为同一神经元中多种类型的突触可塑性提供区域特异性位置。除了各种类型的LTP和LTD具有不同的信号传导和表达机制外,这些不同类型可塑性的激活可能还取决于背景脑活动状态。在本文中,我们将讨论一些观点,即为什么多种形式的突触可塑性能够同时且独立地共存,并能如此有效地促进提高大脑的记忆存储效率和处理能力。我们假设,解析由不同神经调质系统调节的t-LTP和t-LTD机制的亚细胞定位对于更全面地理解记忆形成中的突触可塑性至关重要。