Suppr超能文献

单个海马CA1锥体神经元中多种类型突触可塑性的共存

Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons.

作者信息

Edelmann Elke, Cepeda-Prado Efrain, Leßmann Volkmar

机构信息

Institute of Physiology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke UniversityMagdeburg, Germany.

Institute of Physiology, Otto-von-Guericke University Magdeburg, Germany.

出版信息

Front Synaptic Neurosci. 2017 Mar 14;9:7. doi: 10.3389/fnsyn.2017.00007. eCollection 2017.

Abstract

Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation . Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the brain. We hypothesize that resolving the subcellular location of t-LTP and t-LTD mechanisms that are regulated by distinct neuromodulator systems will be essential to reach a more cohesive understanding of synaptic plasticity in memory formation.

摘要

理解学习和记忆机制是神经科学的一个重要目标。为了深入了解记忆形成的潜在细胞机制,人们运用各种技术在不同脑区研究突触可塑性过程。用于仔细研究增强或减弱突触传递的不同方法的一个有效模型是记录长时程增强(LTP)或长时程抑制(LTD)。在单细胞水平上,尖峰时间依赖性可塑性(STDP)协议已成为一种强大的工具,可通过在记忆形成过程中可能也会出现的刺激范式来研究突触可塑性。这种可塑性可由具有多个重复次数和刺激模式的不同STDP范式诱导产生。它们随后会募集或激活不同的分子途径和神经调质,以实现STDP的诱导和表达。多巴胺(DA)和脑源性神经营养因子(BDNF)最近已被证明是海马体中谢弗侧支(SC)-CA1突触处海马体STDP的重要调节因子,并且仅由可区分的STDP范式激活。给定神经元中不同类型的平行突触可塑性取决于特定的亚细胞分子前提条件。由于已知CA1锥体神经元的基底树突和顶端树突是异质的,并且描述了特定受体和离子通道的距离依赖性树突梯度,因此树突可能为同一神经元中多种类型的突触可塑性提供区域特异性位置。除了各种类型的LTP和LTD具有不同的信号传导和表达机制外,这些不同类型可塑性的激活可能还取决于背景脑活动状态。在本文中,我们将讨论一些观点,即为什么多种形式的突触可塑性能够同时且独立地共存,并能如此有效地促进提高大脑的记忆存储效率和处理能力。我们假设,解析由不同神经调质系统调节的t-LTP和t-LTD机制的亚细胞定位对于更全面地理解记忆形成中的突触可塑性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f48/5348504/08cf6de36e61/fnsyn-09-00007-g0001.jpg

相似文献

1
Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons.
Front Synaptic Neurosci. 2017 Mar 14;9:7. doi: 10.3389/fnsyn.2017.00007. eCollection 2017.
2
Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
Brain Res. 2013 Aug 14;1526:1-14. doi: 10.1016/j.brainres.2013.05.023. Epub 2013 May 24.
6
The requirement of BDNF for hippocampal synaptic plasticity is experience-dependent.
Hippocampus. 2016 Jun;26(6):739-51. doi: 10.1002/hipo.22555. Epub 2016 Jan 19.
7
Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
J Neurosci. 2017 Mar 15;37(11):2809-2823. doi: 10.1523/JNEUROSCI.2079-16.2016. Epub 2017 Feb 10.
9
Long-term population spike-timing-dependent plasticity promotes synaptic tagging but not cross-tagging in rat hippocampal area CA1.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5737-5746. doi: 10.1073/pnas.1817643116. Epub 2019 Feb 28.
10
GABA inhibition modulates NMDA-R mediated spike timing dependent plasticity (STDP) in a biophysical model.
Neural Netw. 2011 Jan;24(1):29-42. doi: 10.1016/j.neunet.2010.08.005. Epub 2010 Aug 22.

引用本文的文献

1
Growth Hormone Alters Remapping in the Hippocampal Area CA1 in a Novel Environment.
eNeuro. 2025 Feb 11;12(2). doi: 10.1523/ENEURO.0237-24.2024. Print 2025 Feb.
2
The spike-timing-dependent plasticity of VIP interneurons in motor cortex.
Front Cell Neurosci. 2024 Apr 19;18:1389094. doi: 10.3389/fncel.2024.1389094. eCollection 2024.
4
The role of hippocampal CaMKII in resilience to trauma-related psychopathology.
Neurobiol Stress. 2022 Nov 30;21:100506. doi: 10.1016/j.ynstr.2022.100506. eCollection 2022 Nov.
5
Adaptive control of synaptic plasticity integrates micro- and macroscopic network function.
Neuropsychopharmacology. 2023 Jan;48(1):121-144. doi: 10.1038/s41386-022-01374-6. Epub 2022 Aug 29.
6
Specific Plasticity Loci and Their Synergism Mediate Operant Conditioning.
J Neurosci. 2022 Feb 16;42(7):1211-1223. doi: 10.1523/JNEUROSCI.1722-21.2021. Epub 2022 Jan 6.
8
Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience.
Front Mol Neurosci. 2020 Oct 21;13:572312. doi: 10.3389/fnmol.2020.572312. eCollection 2020.
9
Activity-Dependent Remodeling of Synaptic Protein Organization Revealed by High Throughput Analysis of STED Nanoscopy Images.
Front Neural Circuits. 2020 Oct 15;14:57. doi: 10.3389/fncir.2020.00057. eCollection 2020.

本文引用的文献

1
Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1.
Neuron. 2016 Aug 3;91(3):652-65. doi: 10.1016/j.neuron.2016.06.020. Epub 2016 Jul 7.
2
Mechanisms of homeostatic plasticity in the excitatory synapse.
J Neurochem. 2016 Dec;139(6):973-996. doi: 10.1111/jnc.13687. Epub 2016 Jul 1.
4
Endocannabinoid dynamics gate spike-timing dependent depression and potentiation.
Elife. 2016 Feb 27;5:e13185. doi: 10.7554/eLife.13185.
5
Neural plasticity and behavior - sixty years of conceptual advances.
J Neurochem. 2016 Oct;139 Suppl 2:179-199. doi: 10.1111/jnc.13580. Epub 2016 Mar 10.
7
Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.
Front Neural Circuits. 2016 Jan 19;9:85. doi: 10.3389/fncir.2015.00085. eCollection 2015.
9
Distinct Eligibility Traces for LTP and LTD in Cortical Synapses.
Neuron. 2015 Nov 4;88(3):528-38. doi: 10.1016/j.neuron.2015.09.037. Epub 2015 Oct 22.
10
A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo.
PLoS Comput Biol. 2015 Nov 6;11(11):e1004588. doi: 10.1371/journal.pcbi.1004588. eCollection 2015 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验