Suppr超能文献

突触可塑性的自适应控制整合了微观和宏观网络功能。

Adaptive control of synaptic plasticity integrates micro- and macroscopic network function.

机构信息

Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.

Carney Institute for Brain Science, Brown University, Providence, RI, USA.

出版信息

Neuropsychopharmacology. 2023 Jan;48(1):121-144. doi: 10.1038/s41386-022-01374-6. Epub 2022 Aug 29.

Abstract

Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity-defined broadly as the adaptive control of plasticity-forges connections across scales by governing what groups of synapses can and can't learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson's disease.

摘要

突触可塑性调节神经元之间的相互作用,因此很可能是行为学习和发展的主要驱动因素。这种微观-宏观相互作用的发生方式还不太清楚,因为研究人员经常在特定的抽象和规模范围内检查模型。计算神经科学和机器学习模型为神经网络的可塑性提供了理论上强大的分析,但结果往往是孤立的,与生物学的联系也很粗略。在这篇综述中,我们检查了这些领域之间的联系,询问网络计算如何随着可塑性的不同特征而变化,反之亦然。我们回顾了钙动力学和神经调质信号如何在突触处控制可塑性,这些变化在网络中的表现,以及它们在专门的回路中的影响。我们得出结论,广泛定义的“记忆性可塑性”(metaplasticity)——即对可塑性的适应性控制——通过控制哪些突触群可以学习、何时学习以及达到什么目的,在不同尺度之间建立了联系。我们讨论的记忆性可塑性通过采用赫布机制、改变网络特性以及在大脑系统内部和之间路由活动来发挥作用。询问这些操作如何出错也应该有助于理解病理学,我们在自闭症、精神分裂症和帕金森病的背景下讨论了这个问题。

相似文献

4
Structural plasticity can produce metaplasticity.结构可塑性可以产生超可塑性。
PLoS One. 2009 Nov 30;4(11):e8062. doi: 10.1371/journal.pone.0008062.
7
Synaptic Plasticity Forms and Functions.突触可塑性的形式和功能。
Annu Rev Neurosci. 2020 Jul 8;43:95-117. doi: 10.1146/annurev-neuro-090919-022842. Epub 2020 Feb 19.

引用本文的文献

3
Predictive learning as the basis of the testing effect.预测性学习作为测试效应的基础。
Commun Psychol. 2025 Feb 1;3(1):18. doi: 10.1038/s44271-025-00200-1.
5
Thalamocortical architectures for flexible cognition and efficient learning.丘脑皮质结构用于灵活的认知和高效的学习。
Trends Cogn Sci. 2024 Aug;28(8):739-756. doi: 10.1016/j.tics.2024.05.006. Epub 2024 Jun 17.
10
Rethinking the network determinants of motor disability in Parkinson's disease.重新思考帕金森病运动障碍的网络决定因素
Front Synaptic Neurosci. 2023 Jun 28;15:1186484. doi: 10.3389/fnsyn.2023.1186484. eCollection 2023.

本文引用的文献

7
The whole prefrontal cortex is premotor cortex.整个前额皮质都是运动前皮质。
Philos Trans R Soc Lond B Biol Sci. 2022 Feb 14;377(1844):20200524. doi: 10.1098/rstb.2020.0524. Epub 2021 Dec 27.
10
Computational roles of intrinsic synaptic dynamics.内在突触动力学的计算作用。
Curr Opin Neurobiol. 2021 Oct;70:34-42. doi: 10.1016/j.conb.2021.06.002. Epub 2021 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验