Suppr超能文献

从精神障碍发病的静态模型到动态模型:综述。

Moving From Static to Dynamic Models of the Onset of Mental Disorder: A Review.

机构信息

Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Melbourne, Australia2Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.

Interdisciplinary Center for Psychopathology and Emotion Regulation, Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

出版信息

JAMA Psychiatry. 2017 May 1;74(5):528-534. doi: 10.1001/jamapsychiatry.2017.0001.

Abstract

IMPORTANCE

In recent years, there has been increased focus on subthreshold stages of mental disorders, with attempts to model and predict which individuals will progress to full-threshold disorder. Given this research attention and the clinical significance of the issue, this article analyzes the assumptions of the theoretical models in the field.

OBSERVATIONS

Psychiatric research into predicting the onset of mental disorder has shown an overreliance on one-off sampling of cross-sectional data (ie, a snapshot of clinical state and other risk markers) and may benefit from taking dynamic changes into account in predictive modeling. Cross-disciplinary approaches to complex system structures and changes, such as dynamical systems theory, network theory, instability mechanisms, chaos theory, and catastrophe theory, offer potent models that can be applied to the emergence (or decline) of psychopathology, including psychosis prediction, as well as to transdiagnostic emergence of symptoms.

CONCLUSIONS AND RELEVANCE

Psychiatric research may benefit from approaching psychopathology as a system rather than as a category, identifying dynamics of system change (eg, abrupt vs gradual psychosis onset), and determining the factors to which these systems are most sensitive (eg, interpersonal dynamics and neurochemical change) and the individual variability in system architecture and change. These goals can be advanced by testing hypotheses that emerge from cross-disciplinary models of complex systems. Future studies require repeated longitudinal assessment of relevant variables through either (or a combination of) micro-level (momentary and day-to-day) and macro-level (month and year) assessments. Ecological momentary assessment is a data collection technique appropriate for micro-level assessment. Relevant statistical approaches are joint modeling and time series analysis, including metric-based and model-based methods that draw on the mathematical principles of dynamical systems. This next generation of prediction studies may more accurately model the dynamic nature of psychopathology and system change as well as have treatment implications, such as introducing a means of identifying critical periods of risk for mental state deterioration.

摘要

重要性

近年来,人们越来越关注精神障碍的亚阈值阶段,并试图建立模型来预测哪些个体将发展为全阈值障碍。鉴于这一研究关注度以及该问题的临床意义,本文分析了该领域理论模型的假设。

观察结果

在预测精神障碍发病的精神病学研究中,过度依赖横断面数据的一次性抽样(即临床状态和其他风险标志物的快照),并且可能受益于在预测建模中考虑动态变化。跨学科方法可用于复杂系统结构和变化,例如动力系统理论、网络理论、不稳定性机制、混沌理论和突变理论,这些方法提供了有力的模型,可应用于精神病理学的出现(或下降),包括精神病预测,以及症状的跨诊断出现。

结论和相关性

精神病学研究可能受益于将精神病理学视为一个系统,而不是一个类别,确定系统变化的动态(例如,精神病的突然或逐渐发作),并确定系统最敏感的因素(例如,人际动态和神经化学变化)以及系统结构和变化的个体可变性。通过测试来自复杂系统跨学科模型的假设,可以推进这些目标。未来的研究需要通过微观水平(瞬间和日常)和宏观水平(月和年)的重复纵向评估相关变量。生态瞬时评估是一种适用于微观水平评估的数据分析技术。相关的统计方法是联合建模和时间序列分析,包括基于度量和基于模型的方法,这些方法借鉴了动力系统的数学原理。这一代预测研究可以更准确地模拟精神病理学和系统变化的动态性质,并具有治疗意义,例如引入一种识别精神状态恶化风险关键期的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验