van der Does Floor, Nagamine Masanori, Kitano Masato, Saito Taku, van der Wee Nic, Vermetten Eric, Giltay Erik
Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
Division of Behavioral Science, National Defense Medical College Research Institute, Saitama, Japan.
Psychiatry Clin Psychopharmacol. 2025 Aug 11;35(Suppl 1):S141-S151. doi: 10.5152/pcp.2025.251059.
Addressing the spectrum of mental health requires innovative methods. Network theory views psychopathological symptoms as complex dynamic systems, potentially allowing for the identification of better monitoring and intervention targets. This article advocates for the Dynamic Time Warping (DTW) algorithm to construct symptom networks, building on two recent studies on Post-Traumatic Stress Disorder (PTSD). The studies used a cohort of 55,632 Japan Ground Self-Defense Force personnel who completed the Impact of Event Scale-Revised annually from 2013 to 2018. The first study applied DTW to create symptom networks for individuals with significant PTSD symptoms (IES-R ≥ 25, n = 1,120). The second study analyzed dynamic symptom networks in four PTSD symptom trajectories (cumulative IES-R > 5, n = 10,211), generating temporal lead and -lag profiles to reflect symptom improvement and worsening. The first study identified four PTSD symptom clusters, yielding evidence for a new dissociation cluster. In the second study, lower network density in undirected DTW analyses was associated with chronic PTSD. Directed analyses showed that dissociation symptoms decreased first during recovery, while emotional reactivity persisted. Conversely, in worsening PTSD avoidance symptoms escalated first, while dissociation symptoms intensified last. These findings demonstrate the potential of DTW as a tool for constructing interpretable networks that capture the complex dynamics of psychological processes. This approach could enhance our understanding and treatment of a wide range of mental health conditions. Future research should further explore its applications to enable more personalized and effective mental health interventions.
应对心理健康问题需要创新方法。网络理论将精神病理症状视为复杂的动态系统,这有可能有助于识别更好的监测和干预目标。本文基于最近两项关于创伤后应激障碍(PTSD)的研究,主张使用动态时间规整(DTW)算法来构建症状网络。这些研究使用了一组55632名日本陆上自卫队人员,他们在2013年至2018年期间每年完成事件影响量表修订版(IES-R)的测试。第一项研究应用DTW为具有显著PTSD症状(IES-R≥25,n = 1120)的个体创建症状网络。第二项研究分析了四种PTSD症状轨迹(累积IES-R>5,n = 10211)中的动态症状网络,生成时间领先和滞后剖面图以反映症状的改善和恶化。第一项研究确定了四个PTSD症状簇,为一个新的解离簇提供了证据。在第二项研究中,无向DTW分析中较低的网络密度与慢性PTSD相关。有向分析表明,在恢复过程中解离症状首先减少,而情绪反应性持续存在。相反,在PTSD恶化过程中,回避症状首先升级,而解离症状最后加剧。这些发现证明了DTW作为一种构建可解释网络的工具的潜力,该网络能够捕捉心理过程的复杂动态。这种方法可以增强我们对广泛心理健康状况的理解和治疗。未来的研究应进一步探索其应用,以实现更个性化和有效的心理健康干预。