Suppr超能文献

空位凝聚在锐钛矿 TiO 纳米线中空形成中的作用。

Role of Vacancy Condensation in the Formation of Voids in Rutile TiO Nanowires.

机构信息

Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Straße 1, 40237 Düsseldorf, Germany.

Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology , 7491 Trondheim, Norway.

出版信息

ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13471-13479. doi: 10.1021/acsami.7b01160. Epub 2017 Apr 10.

Abstract

Titanium dioxide nanowire (NW) arrays are incorporated in many devices for energy conversion, energy storage, and catalysis. A common approach to fabricate these NWs is based on hydrothermal synthesis strategies. A drawback of this low-temperature method is that the NWs have a high density of defects, such as stacking faults, dislocations, and oxygen vacancies. These defects compromise the performance of devices. Here, we report a postgrowth thermal annealing procedure to remove these lattice defects and propose a mechanism to explain the underlying changes in the structure of the NWs. A detailed transmission electron microscopy study including in situ observation at elevated temperatures reveals a two-stage process. Additional spectroscopic analyses and X-ray diffraction experiments clarify the underlying mechanisms. In an early, low-temperature stage, the as-grown mesocrystalline NW converts to a single crystal by the dehydration of surface-bound OH groups. At temperatures above 500 °C, condensation of oxygen vacancies takes place, which leads to the fabrication of NWs with internal voids. These voids are faceted and covered with Ti-rich amorphous TiO.

摘要

二氧化钛纳米线 (NW) 阵列被应用于许多能量转换、能量存储和催化设备中。一种常见的制造这些 NW 的方法是基于水热合成策略。这种低温方法的一个缺点是 NW 具有高密度的缺陷,如层错、位错和氧空位。这些缺陷会影响器件的性能。在这里,我们报告了一种后生长的热退火程序来去除这些晶格缺陷,并提出了一种解释 NW 结构变化的机制。包括在高温下进行原位观察的详细透射电子显微镜研究揭示了一个两阶段过程。额外的光谱分析和 X 射线衍射实验阐明了潜在的机制。在早期的低温阶段,通过表面结合的 OH 基团的脱水,生长的介晶 NW 转变为单晶。在 500°C 以上的温度下,氧空位的凝聚发生,导致具有内部空隙的 NW 的制造。这些空隙是有棱纹的,并覆盖着富钛的非晶态 TiO。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验