Saul Michael C, Seward Christopher H, Troy Joseph M, Zhang Huimin, Sloofman Laura G, Lu Xiaochen, Weisner Patricia A, Caetano-Anolles Derek, Sun Hao, Zhao Sihai Dave, Chandrasekaran Sriram, Sinha Saurabh, Stubbs Lisa
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Genome Res. 2017 Jun;27(6):959-972. doi: 10.1101/gr.214221.116. Epub 2017 Mar 29.
Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.
争斗性遭遇是未来行为的强大影响因素,而从这类社会挑战中学习的能力是一项至关重要的适应性特征。我们最近确定了一个保守的转录程序,它定义了动物物种对社会挑战的反应,在转录因子(TF)、能量代谢和发育信号基因中高度富集。为了了解这个程序的轨迹,并揭示控制这种反应的最重要的调节影响,我们随着时间的推移,将基因表达数据与社会挑战小鼠下丘脑、额叶皮质和杏仁核中的染色质景观整合在一起。表达数据揭示了一个复杂的时空事件模式,始于额叶皮质中的神经信号分子,终于杏仁核和下丘脑中发育因子的调节,其基础是能量代谢相关基因表达的全系统转变。转录信号与染色质可及性的显著变化以及一个与挑战相关的TF网络相关。其中,保守的代谢和发育调节因子ESRRA因其特别早期且重要的调节作用而受到关注。细胞类型反卷积分析将这种社会背景下的差异代谢和发育信号分别主要归因于少突胶质细胞和神经元,并且我们表明ESRRA在这两种细胞类型中均有表达。我们在皮质染色质中定位ESRRA结合位点,表明这种核受体结合差异表达的能量相关和神经发育TF基因。这些数据将代谢和神经发育信号与社会挑战联系起来,并以前所未有的组织和时间分辨率确定了这一过程的关键调节驱动因素。