Suppr超能文献

一种在特定序列背景下进行酶促赖氨酸甲基化的系统。

A System for Enzymatic Lysine Methylation in a Desired Sequence Context.

作者信息

Aileni Vinay Kumar, Davydova Erna, Moen Anders, Falnes Pål Ø

机构信息

Department of Biosciences, University of Oslo , P.O. Box 1066, Blindern, 0316 Oslo, Norway.

出版信息

ACS Omega. 2017 Feb 28;2(2):462-469. doi: 10.1021/acsomega.6b00486. Epub 2017 Feb 10.

Abstract

A number of lysine-specific methyltransferases (KMTs) are responsible for the post-translational modification of cellular proteins on lysine residues. Most KMTs typically recognize specific motifs in unstructured, short peptide sequences. However, we have recently discovered a novel KMT that appeared to have a more relaxed sequence specificity, namely, valosin-containing protein (VCP)-KMT, which trimethylates Lys-315 in the molecular chaperone VCP. On the basis of this, here, we explored the possibility of using the VCP-KMT/VCP system to obtain specific lysine methylation of desired sequences grafted onto a VCP-derived scaffold. We generated VCP-derived proteins in which three amino acid residues on each side of Lys-315 had been replaced by various sequences representing lysine methylation sites in histone H3. We found that all of these chimeric proteins were subject to efficient VCP-KMT-mediated methylation in vitro, and methylation was also observed in mammalian cells. Thus, we here describe a versatile system for introducing lysine methylation into a desired peptide sequence, and the approach should be readily expandable for generating combinatorial libraries of methylated sequences.

摘要

许多赖氨酸特异性甲基转移酶(KMTs)负责细胞蛋白赖氨酸残基的翻译后修饰。大多数KMTs通常识别无结构的短肽序列中的特定基序。然而,我们最近发现了一种新型的KMT,即含缬酪肽蛋白(VCP)-KMT,其序列特异性似乎更为宽松,它可使分子伴侣VCP中的赖氨酸-315发生三甲基化。基于此,我们在此探索了利用VCP-KMT/VCP系统对嫁接到VCP衍生支架上的所需序列进行特异性赖氨酸甲基化的可能性。我们生成了VCP衍生蛋白,其中赖氨酸-315两侧的三个氨基酸残基已被代表组蛋白H3中赖氨酸甲基化位点的各种序列所取代。我们发现所有这些嵌合蛋白在体外都能被VCP-KMT高效介导甲基化,并且在哺乳动物细胞中也观察到了甲基化现象。因此,我们在此描述了一种将赖氨酸甲基化引入所需肽序列的通用系统,并且该方法应该很容易扩展以生成甲基化序列的组合文库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c82/6644021/6c05cf8f9126/ao-2016-00486f_0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验