Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany.
Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany.
Nat Commun. 2017 Mar 30;8:14893. doi: 10.1038/ncomms14893.
Cholesterol is an important regulator of membrane protein function. However, the exact mechanisms involved in this process are still not fully understood. Here we study how the tertiary and quaternary structure of the mitochondrial translocator protein TSPO, which binds cholesterol with nanomolar affinity, is affected by this sterol. Residue-specific analysis of TSPO by solid-state NMR spectroscopy reveals a dynamic monomer-dimer equilibrium of TSPO in the membrane. Binding of cholesterol to TSPO's cholesterol-recognition motif leads to structural changes across the protein that shifts the dynamic equilibrium towards the translocator monomer. Consistent with an allosteric mechanism, a mutation within the oligomerization interface perturbs transmembrane regions located up to 35 Å away from the interface, reaching TSPO's cholesterol-binding motif. The lower structural stability of the intervening transmembrane regions provides a mechanistic basis for signal transmission. Our study thus reveals an allosteric signal pathway that connects membrane protein tertiary and quaternary structure with cholesterol binding.
胆固醇是膜蛋白功能的重要调节剂。然而,这一过程中涉及的确切机制仍不完全清楚。在这里,我们研究了与胆固醇结合具有纳摩尔亲和力的线粒体转位蛋白 TSPO 的三级和四级结构如何受到这种固醇的影响。通过固态 NMR 光谱对 TSPO 进行的残基特异性分析揭示了 TSPO 在膜中的动态单体-二聚体平衡。胆固醇与 TSPO 的胆固醇识别模体的结合导致蛋白结构发生变化,从而使动态平衡向转位蛋白单体移动。与变构机制一致,寡聚化界面内的突变会干扰距界面达 35 Å 远的跨膜区域,直至到达 TSPO 的胆固醇结合模体。中间跨膜区域的结构稳定性降低为信号传递提供了一个机械基础。因此,我们的研究揭示了一种变构信号通路,它将膜蛋白的三级和四级结构与胆固醇结合联系起来。