School of Physics and CRANN, AMBER Research Centre, Trinity College Dublin, College Green, Dublin 2, Ireland.
School of Chemistry and CRANN, AMBER Research Centre, Trinity College Dublin, College Green, Dublin 2, Ireland.
Sci Rep. 2017 Mar 30;7:45548. doi: 10.1038/srep45548.
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone ("hot-volume"). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~10 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.
为了实现对低浓度分子的高重复性和强光学检测,需要同时具备高强度且均匀的电场以作为稳健的信号放大器。近年来,人们研究了不同的等离子体纳米结构来产生这种复杂的光学近场。然而,这些结构要么具有很高的增强因子(EF),要么具有空间均匀性,但两者无法兼得。粒子间的小间隙或尖锐的纳米结构具有巨大的 EF,但没有近场均匀性。同时,使用圆形和分离的单体的方法可以产生具有中等 EF 的均匀近场。在这里,我们通过数值模拟指导,展示了弱耦合的 Ag 纳米螺旋阵列如何实现均匀和强的近场增强,甚至达到了单个分子可重现检测的极限。单个纳米螺旋的独特近场分布由宽热点组成,在特定的阵列配置下与相邻纳米螺旋的热点合并,从而产生一个宽而均匀的检测区域(“热点体积”)。我们通过表面增强拉曼光谱实验评估了这些纳米结构,得到了相应的 EF 约为 10 和相对标准偏差 <10%。这些值表明纳米螺旋阵列是可重复光学检测的最先进的衬底,也是近场成像等相关领域引人注目的纳米结构。