Suppr超能文献

具有表面增强拉曼散射活性的等离子体银涂层多尺度3D结构的周期性阵列:制备、建模与表征

Periodic Arrays of Plasmonic Ag-Coated Multiscale 3D-Structures with SERS Activity: Fabrication, Modelling and Characterisation.

作者信息

Lafuente Marta, Kooijman Lucas J, Rodrigo Sergio G, Berenschot Erwin, Mallada Reyes, Pina María P, Tas Niels R, Tiggelaar Roald M

机构信息

Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Campus Rio Ebro, C/Maria de Luna s/n, Universidad de Zaragoza, 50018 Zaragoza, Spain.

Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.

出版信息

Micromachines (Basel). 2024 Sep 4;15(9):1129. doi: 10.3390/mi15091129.

Abstract

Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present SERS specimens based on periodic arrays of 3D-structures coated with silver, fabricated by silicon top-down micro and nanofabrication (10 mm × 10 mm footprint). Each 3D-structure is essentially an octahedron on top of a pyramid. The width of the top part-the octahedron-was varied from 0.7 µm to 5 µm. The smallest structures reached an analytical enhancement factor (AEF) of 3.9 × 10 with a relative standard deviation (RSD) below 20%. According to finite-difference time-domain (FDTD) simulations, the origin of this signal amplification lies in the strong localization of electromagnetic fields at the edges and surfaces of the octahedrons. Finally, the sensitivity of these SERS specimens was evaluated under close-to-reality conditions using a portable Raman spectrophotometer and monitoring of the three vibrational bands of 4-nitrobenzenethiol (4-NBT). Thus, this contribution deals with fabrication, characterization and simulation of multiscale 3D-structures with SERS activity.

摘要

表面增强拉曼光谱(SERS)作为一种传感工具正变得越来越重要。然而,SERS技术的广泛应用主要受到等离子体结构均匀性以及对低浓度目标分析物灵敏度方面的限制。在这项工作中,我们展示了基于涂有银的三维结构周期性阵列的SERS样本,这些样本是通过硅的自上而下的微纳加工制造的(占地面积为10毫米×10毫米)。每个三维结构本质上是一个位于金字塔顶部的八面体。顶部八面体部分的宽度从0.7微米变化到5微米。最小的结构达到了3.9×10的分析增强因子(AEF),相对标准偏差(RSD)低于20%。根据时域有限差分(FDTD)模拟,这种信号放大的起源在于八面体边缘和表面处电磁场的强烈局域化。最后,使用便携式拉曼分光光度计并监测4-硝基苯硫酚(4-NBT)的三个振动带,在接近实际的条件下评估了这些SERS样本的灵敏度。因此,本文涉及具有SERS活性的多尺度三维结构的制造、表征和模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f102/11434411/c63c56f42494/micromachines-15-01129-g0A1.jpg

相似文献

3
Facile fabrication of 2D hetero core-satellites patterned Ag nanoparticle arrays with tunable plasmonic bands for SERS detection.
Nanotechnology. 2019 Mar 22;30(12):125701. doi: 10.1088/1361-6528/aafa26. Epub 2018 Dec 20.
4
Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array.
Sensors (Basel). 2019 Sep 14;19(18):3966. doi: 10.3390/s19183966.
7
FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection.
Biosensors (Basel). 2022 Feb 17;12(2):128. doi: 10.3390/bios12020128.
8
Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Dec 15;263:120141. doi: 10.1016/j.saa.2021.120141. Epub 2021 Jul 6.
9
Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy.
ACS Appl Mater Interfaces. 2016 Jun 22;8(24):15668-75. doi: 10.1021/acsami.6b05431. Epub 2016 Jun 9.

本文引用的文献

1
Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy.
ACS Nano. 2024 Apr 9;18(14):9773-9783. doi: 10.1021/acsnano.4c01474. Epub 2024 Mar 26.
2
Fabrication of Flexible Pyramid Array as SERS Substrate for Direct Sampling and Reproducible Detection.
Anal Chem. 2023 Sep 26;95(38):14184-14191. doi: 10.1021/acs.analchem.3c01455. Epub 2023 Sep 18.
4
Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones.
ACS Appl Nano Mater. 2023 May 20;6(11):9657-9669. doi: 10.1021/acsanm.3c01249. eCollection 2023 Jun 9.
5
Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices.
ACS Appl Nano Mater. 2022 Oct 28;5(10):15847-15854. doi: 10.1021/acsanm.2c04079. Epub 2022 Oct 12.
6
Optimum fabrication parameters for preparing high performance SERS substrates based on Si pyramid structure and silver nanoparticles.
RSC Adv. 2021 Sep 22;11(50):31189-31196. doi: 10.1039/d1ra05215b. eCollection 2021 Sep 21.
7
Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):3580-3590. doi: 10.1021/acsami.1c22465. Epub 2022 Jan 4.
8
A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry.
Anal Chim Acta. 2020 Feb 8;1097:1-29. doi: 10.1016/j.aca.2019.11.049. Epub 2019 Nov 22.
9
Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice.
Angew Chem Int Ed Engl. 2020 Mar 27;59(14):5454-5462. doi: 10.1002/anie.201908154. Epub 2020 Feb 20.
10
Present and Future of Surface-Enhanced Raman Scattering.
ACS Nano. 2020 Jan 28;14(1):28-117. doi: 10.1021/acsnano.9b04224. Epub 2019 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验