IEEE Trans Image Process. 2017 Jun;26(6):2767-2780. doi: 10.1109/TIP.2017.2686652. Epub 2017 Mar 23.
Retinex is an early and famous theory attempting to estimate the human color sensation derived from an observed scene. When applied to a digital image, the original implementation of retinex estimates the color sensation by modifying the pixels channel intensities with respect to a local reference white, selected from a set of random paths. The spatial search of the local reference white influences the final estimation. The recent algorithm energy-driven termite retinex (ETR), as well as its predecessor termite retinex, has introduced a new path-based image aware sampling scheme, where the paths depend on local visual properties of the input image. Precisely, the ETR paths transit over pixels with high gradient magnitude that have been proved to be important for the formation of color sensation. Such a sampling method enables the visit of image portions effectively relevant to the estimation of the color sensation, while it reduces the analysis of pixels with less essential and/or redundant data, i.e., the flat image regions. While the ETR sampling scheme is very efficacious in detecting image pixels salient for the color sensation, its computational complexity can be a limit. In this paper, we present a novel Gradient-based RAndom Sampling Scheme that inherits from ETR the image aware sampling principles, but has a lower computational complexity, while similar performance. Moreover, the new sampling scheme can be interpreted both as a path-based scanning and a 2D sampling.
Retinex 是一种早期而著名的理论,旨在估计人眼对观察到的场景的颜色感知。当应用于数字图像时,Retinex 的原始实现通过相对于从一组随机路径中选择的局部参考白修改像素通道强度来估计颜色感知。局部参考白的空间搜索会影响最终的估计。最近的算法能量驱动白蚁 Retinex(ETR)及其前身白蚁 Retinex 引入了一种新的基于路径的图像感知采样方案,其中路径取决于输入图像的局部视觉属性。具体来说,ETR 路径经过具有高梯度幅度的像素,这些像素已被证明对于颜色感知的形成很重要。这种采样方法能够有效地访问与颜色感知估计相关的图像部分,同时减少对较少重要和/或冗余数据的像素的分析,即平坦的图像区域。虽然 ETR 采样方案在检测对颜色感知很重要的图像像素方面非常有效,但它的计算复杂度可能是一个限制。在本文中,我们提出了一种新颖的基于梯度的随机采样方案,它继承了 ETR 的图像感知采样原理,但具有更低的计算复杂度,同时具有相似的性能。此外,新的采样方案既可以解释为基于路径的扫描,也可以解释为 2D 采样。