Suppr超能文献

一种计算高效的基于映射的神经元模型的相图与动力学

Phase diagrams and dynamics of a computationally efficient map-based neuron model.

作者信息

Girardi-Schappo Mauricio, Bortolotto Germano S, Stenzinger Rafael V, Gonsalves Jheniffer J, Tragtenberg Marcelo H R

机构信息

Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, McGill University, Montreal Neurological Institute and Hospital, H3A 2B4, Montreal, Quebec, Canada.

Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil.

出版信息

PLoS One. 2017 Mar 30;12(3):e0174621. doi: 10.1371/journal.pone.0174621. eCollection 2017.

Abstract

We introduce a new map-based neuron model derived from the dynamical perceptron family that has the best compromise between computational efficiency, analytical tractability, reduced parameter space and many dynamical behaviors. We calculate bifurcation and phase diagrams analytically and computationally that underpins a rich repertoire of autonomous and excitable dynamical behaviors. We report the existence of a new regime of cardiac spikes corresponding to nonchaotic aperiodic behavior. We compare the features of our model to standard neuron models currently available in the literature.

摘要

我们引入了一种新的基于映射的神经元模型,该模型源自动态感知器家族,在计算效率、分析易处理性、减少的参数空间和多种动态行为之间实现了最佳折衷。我们通过解析和计算得出了分岔图和相图,这些图支撑了丰富多样的自主和可激发动态行为。我们报告了一种对应于非混沌非周期行为的新型心脏尖峰状态的存在。我们将我们模型的特征与文献中目前可用的标准神经元模型进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验