Suppr超能文献

基于地图的神经网络中与噪声突触耦合的临界雪崩和子采样

Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses.

作者信息

Girardi-Schappo M, Kinouchi O, Tragtenberg M H R

机构信息

Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):024701. doi: 10.1103/PhysRevE.88.024701. Epub 2013 Aug 27.

Abstract

Many different kinds of noise are experimentally observed in the brain. Among them, we study a model of noisy chemical synapse and obtain critical avalanches for the spatiotemporal activity of the neural network. Neurons and synapses are modeled by dynamical maps. We discuss the relevant neuronal and synaptic properties to achieve the critical state. We verify that networks of functionally excitable neurons with fast synapses present power-law avalanches, due to rebound spiking dynamics. We also discuss the measuring of neuronal avalanches by subsampling our data, shedding light on the experimental search for self-organized criticality in neural networks.

摘要

在大脑中通过实验观察到了许多不同类型的噪声。其中,我们研究了一种噪声化学突触模型,并获得了神经网络时空活动的临界雪崩。神经元和突触由动态映射建模。我们讨论了实现临界状态的相关神经元和突触特性。我们验证了具有快速突触的功能可兴奋神经元网络由于反弹尖峰动力学而呈现幂律雪崩。我们还讨论了通过对数据进行二次采样来测量神经元雪崩,这为神经网络中自组织临界性的实验研究提供了线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验