Suppr超能文献

动力蛋白抑制剂(Dynasore)可阻断诱发释放,同时增强来自初级内脏传入神经的自发性突触传递。

Dynasore blocks evoked release while augmenting spontaneous synaptic transmission from primary visceral afferents.

作者信息

Hofmann Mackenzie E, Andresen Michael C

机构信息

Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon, United States of America.

出版信息

PLoS One. 2017 Mar 30;12(3):e0174915. doi: 10.1371/journal.pone.0174915. eCollection 2017.

Abstract

The recycling of vesicle membrane fused during exocytosis is essential to maintaining neurotransmission. The GTPase dynamin is involved in pinching off membrane to complete endocytosis and can be inhibited by dynasore resulting in activity-dependent depletion of release-competent synaptic vesicles. In rat brainstem slices, we examined the effects of dynasore on three different modes of glutamate release-spontaneous, evoked, and asynchronous release-at solitary tract (ST) inputs to neurons in the nucleus of the solitary tract (NTS). Intermittent bursts of stimuli to the ST interspersed with pauses in stimulation allowed examination of these three modes in each neuron continuously. Application of 100 μM dynasore rapidly increased the spontaneous EPSC (sEPSC) frequency which was followed by inhibition of both ST-evoked EPSCs (ST-EPSC) as well as asynchronous EPSCs. The onset of ST-EPSC failures was not accompanied by amplitude reduction-a pattern more consistent with conduction block than reduced probability of vesicle release. Neither result suggested that dynasore interrupted endocytosis. The dynasore response profile resembled intense presynaptic TRPV1 activation. The TRPV1 antagonist capsazepine failed to prevent dynasore increases in sEPSC frequency but did prevent the block of the ST-EPSC. In contrast, the TRPV1 antagonist JNJ 17203212 prevented both actions of dynasore in neurons with TRPV1-expressing ST inputs. In a neuron lacking TRPV1-expressing ST inputs, however, dynasore promptly increased sEPSC rate followed by block of ST-evoked EPSCs. Together our results suggest that dynasore actions on ST-NTS transmission are TRPV1-independent and changes in glutamatergic transmission are not consistent with changes in vesicle recycling and endocytosis.

摘要

胞吐过程中融合的囊泡膜的再循环对于维持神经传递至关重要。GTP酶发动蛋白参与膜的缢断以完成内吞作用,并且可被dynasore抑制,导致具有释放能力的突触囊泡在活性依赖的情况下耗竭。在大鼠脑干切片中,我们研究了dynasore对孤束核(NTS)中神经元的孤束(ST)输入处三种不同模式的谷氨酸释放——自发释放、诱发释放和异步释放——的影响。对ST进行间歇性刺激并穿插刺激暂停,使得能够连续检查每个神经元中的这三种模式。施加100μM的dynasore迅速增加了自发兴奋性突触后电流(sEPSC)频率,随后抑制了ST诱发的兴奋性突触后电流(ST-EPSC)以及异步兴奋性突触后电流。ST-EPSC失败的开始并未伴随着幅度降低——这种模式更符合传导阻滞而非囊泡释放概率降低。这两个结果均未表明dynasore会中断内吞作用。dynasore的反应谱类似于强烈的突触前TRPV1激活。TRPV1拮抗剂辣椒素未能阻止dynasore引起的sEPSC频率增加,但确实阻止了ST-EPSC的阻断。相比之下,TRPV1拮抗剂JNJ 17203212在具有表达TRPV1的ST输入的神经元中阻止了dynasore的两种作用。然而,在一个缺乏表达TRPV1的ST输入的神经元中,dynasore迅速增加了sEPSC速率,随后阻断了ST诱发的兴奋性突触后电流。我们的结果共同表明,dynasore对ST-NTS传递的作用不依赖于TRPV1,并且谷氨酸能传递的变化与囊泡再循环和内吞作用的变化不一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/5373620/1b0d23e60327/pone.0174915.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验