Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, Université Paul Sabatier, CNRS, IRD , 14 avenue Edouard Belin, F-31400 Toulouse, France.
Laboratoire d'Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg, EOST, CNRS , 67084 Strasbourg, France.
Acc Chem Res. 2017 Apr 18;50(4):759-768. doi: 10.1021/acs.accounts.7b00019. Epub 2017 Mar 31.
The reactivity of carbonate and silicate minerals is at the heart of porosity and pore geometry changes in rocks injected with CO, which ultimately control the evolution of flow and transport properties of fluids in porous and/or fractured geological reservoirs. Modeling the dynamics of CO-water-rock interactions is challenging because of the resulting large geochemical disequilibrium, the reservoir heterogeneities, and the large space and time scales involved in the processes. In particular, there is a lack of information about how the macroscopic properties of a reservoir, e.g., the permeability, will evolve as a result of geochemical reactions at the molecular scale. Addressing this point requires a fundamental understanding of how the microstructures influence the macroscopic properties of rocks. The pore scale, which ranges from a few nanometers to centimeters, has stood out as an essential scale of observation of geochemical processes in rocks. Transport or surface reactivity limitations due to the pore space architecture, for instance, are best described at the pore scale itself. It can be also considered as a mesoscale for aggregating and increasing the gain of fundamental understanding of microscopic interfacial processes. Here we focus on the potential application of a combination of physicochemical measurements coupled with nanoscale and microscale imaging techniques during laboratory experiments to improve our understanding of the physicochemical mechanisms that occur at the fluid-solid interface and the dynamics of the coupling between the geochemical reactions and flow and transport modifications at the pore scale. Imaging techniques such as atomic force microscopy, vertical scanning interferometry, focused ion beam transmission electron microscopy, and X-ray microtomography, are ideal for investigating the reactivity dynamics of these complex materials. Minerals and mineral assemblages, i.e., rocks, exhibit heterogeneous and anisotropic reactivity, which challenges the continuum description of porous media and assumptions required for reactive transport modeling at larger scales. The conventional approach, which consists of developing dissolution rate laws normalized to the surface area, should be revisited to account for both the anisotropic crystallographic structure of minerals and the transport of chemical species near the interface, which are responsible for the intrinsic evolution of the mineral dissolution rate as the reaction progresses. In addition, the crystal morphology and the mineral assemblage composition, texture, and structural heterogeneities are crucial in determining whether the permeability and transport properties of the reservoir will be altered drastically or maintain the sealing properties required to ensure the safe sequestration of CO for hundreds of years. Investigating the transport properties in nanometer- to micrometer-thick amorphous Si-rich surface layers (ASSLs), which develop at the fluid-mineral interface in silicates, provides future direction, as ASSLs may prevent contact between the dissolving solids and the pore fluid, potentially inhibiting the dissolution/carbonation process. Equally, at a larger scale, the growth of micrometer- to millimeter-thick alteration layers, which result from the difference in reactivity between silicates and carbonates, slows the transport in the vicinity of the fluid-solid interface in polymineralic rocks, thus limiting the global reactivity of the carbonate matrix. In contrast, in pure limestone, the global reactivity of the monomineralic rock decreases because the flow localization promotes the local reactivity within the forming channels, thus enhancing permeability changes compared with more homogeneous dissolution of the rock matrix. These results indicate that the transformation of the rock matrix should control the evolution of the transport properties in reservoirs injected with CO to the same extent as the intrinsic chemical reactivity of the minerals and the reservoir hydrodynamics. This process, which is currently not captured by large-scale modeling of reactive transport, should benefit from the increasing capabilities of noninvasive and nondestructive characterization tools for pore-scale processes, ultimately constraining reactive transport modeling and improving the reliability of predictions.
碳酸盐和硅酸盐矿物的反应性是注入 CO 的岩石中孔隙度和孔隙几何形状变化的核心,这最终控制了多孔和/或裂缝地质储层中流体流动和传输性质的演化。由于由此产生的大地球化学不平衡、储层非均质性以及过程中涉及的大空间和时间尺度,模拟 CO-水-岩石相互作用的动力学具有挑战性。特别是,缺乏有关储层宏观性质(例如渗透率)如何由于分子尺度上的地球化学反应而演变的信息。解决这一问题需要从根本上了解微观结构如何影响岩石的宏观性质。孔隙尺度范围从几纳米到几厘米,已成为观察岩石中地球化学过程的重要尺度。例如,由于孔隙空间结构导致的传输或表面反应限制,最好在孔隙尺度本身进行描述。它也可以被视为一个介观尺度,用于聚合和增加对微观界面过程基本理解的增益。在这里,我们专注于在实验室实验中结合物理化学测量与纳米和微尺度成像技术的潜在应用,以提高我们对发生在固-液界面的物理化学机制的理解,以及在孔隙尺度上发生的地球化学反应与流动和传输变化之间的耦合动力学。原子力显微镜、垂直扫描干涉测量、聚焦离子束透射电子显微镜和 X 射线微断层扫描等成像技术非常适合研究这些复杂材料的反应动力学。矿物和矿物组合(即岩石)表现出非均相和各向异性的反应性,这对多孔介质的连续体描述以及在较大尺度上进行反应性传输建模的假设提出了挑战。传统的方法是开发基于表面积归一化的溶解速率定律,应该重新考虑,以考虑矿物的各向异性晶体结构和界面附近化学物质的传输,这是导致矿物溶解速率随反应进行而固有演化的原因。此外,晶体形态和矿物组合的组成、结构、质地和结构非均质性对于确定储层的渗透率和传输性质是否会发生剧烈变化或保持确保 CO 安全封存所需的密封性质至关重要。研究硅酸盐中在流体-矿物界面处形成的纳米到微米厚的富硅无定形表面层(ASSL)中的传输性质提供了未来的方向,因为 ASSL 可能会阻止溶解固体与孔隙流体之间的接触,从而可能抑制溶解/碳化过程。同样,在较大的尺度上,由于硅酸盐和碳酸盐之间的反应性差异而形成的几毫米到几毫米厚的蚀变层的生长会减缓多矿物岩石中流体-固界面附近的传输,从而限制碳酸盐基质的整体反应性。相比之下,在纯石灰岩中,单矿物岩石的整体反应性降低,因为流动定位促进了形成通道内的局部反应性,从而增强了渗透率变化,与岩石基质的更均匀溶解相比。这些结果表明,岩石基质的转变应与矿物的固有化学反应性和储层水动力学同等程度地控制注入 CO 的储层中传输性质的演化。由于非侵入性和非破坏性孔隙尺度过程表征工具的功能不断增强,这个过程目前无法通过反应性传输的大规模建模来捕获,应该会受益于该工具,从而限制反应性传输建模并提高预测的可靠性。