Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland.
Nano Lett. 2017 Jun 14;17(6):3501-3505. doi: 10.1021/acs.nanolett.7b00573. Epub 2017 Apr 12.
High-stress SiN nanoresonators have become an attractive choice for electro- and optomechanical devices. Membrane resonators can achieve quality factor (Q)-frequency (f) products exceeding 10 Hz, enabling (in principle) quantum coherent operation at room temperature. String-like beam resonators possess smaller Q × f products; however, on account of their significantly lower mass and mode density, they remain a canonical choice for precision force, mass, and charge sensing, and have recently enabled Heisenberg-limited position measurements at cryogenic temperatures. Here we explore two techniques to enhance the Q of a nanomechanical beam. The techniques relate to two main loss mechanisms: internal loss, which dominates for high aspect ratios and f ≲ 100 MHz, and radiation loss, which dominates for low aspect ratios and f ≳ 100 MHz. First, we show that by embedding a nanobeam in a 1D phononic crystal (PnC), it is possible to localize its flexural motion and shield it against radiation loss. Using this method, we realize f > 100 MHz modes with Q ≈ 10, consistent with internal loss and contrasting sharply with unshielded beams of similar dimensions. We then study the Q × f product of high-order modes of millimeter-long nanobeams. Taking advantage of the mode-shape dependence of stress-induced "loss dilution", we realize a f ≈ 4 MHz mode with Q × f ≈ 9 × 10 Hz. Our results complement recent work on PnC-based "soft-clamping" of nanomembranes, in which mode localization is used to enhance loss dilution. Combining these strategies should enable ultra-low-mass nanobeam oscillators that operate deep in the quantum coherent regime at room temperature.
高应力氮化硅纳米谐振器已成为电和光机械器件的热门选择。膜谐振器可实现超过 10 Hz 的品质因数 (Q) - 频率 (f) 乘积,从而(原则上)可在室温下实现量子相干操作。线状梁谐振器具有更小的 Q × f 乘积;然而,由于其质量和模式密度显著降低,它们仍然是精密力、质量和电荷传感的典型选择,并且最近已在低温下实现了海森堡极限位置测量。在这里,我们探索了两种增强纳米机械梁 Q 的技术。这些技术与两种主要的损耗机制有关:内部损耗,在高纵横比和 f ≲ 100 MHz 时占主导地位,以及辐射损耗,在低纵横比和 f ≳ 100 MHz 时占主导地位。首先,我们表明,通过将纳米梁嵌入一维声子晶体(PnC)中,可以实现其弯曲运动的局部化,并防止其辐射损耗。使用这种方法,我们实现了 f > 100 MHz 的模式,Q ≈ 10,与内部损耗一致,与类似尺寸的未屏蔽梁形成鲜明对比。然后,我们研究了毫米长纳米梁的高阶模式的 Q × f 乘积。利用应力诱导“损耗稀释”的模式形状依赖性,我们实现了 f ≈ 4 MHz 的模式,其 Q × f ≈ 9 × 10 Hz。我们的结果补充了最近基于 PnC 的纳米膜“软夹”的工作,其中模式局域化用于增强损耗稀释。结合这些策略,应该能够实现超低质量的纳米梁振荡器,它们在室温下可在量子相干深区工作。