Suppr超能文献

原核生物基因组的流动性取决于有效种群大小。

Prokaryote genome fluidity is dependent on effective population size.

作者信息

Andreani Nadia Andrea, Hesse Elze, Vos Michiel

机构信息

Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padua, Italy.

European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Penryn, UK.

出版信息

ISME J. 2017 Jul;11(7):1719-1721. doi: 10.1038/ismej.2017.36. Epub 2017 Apr 14.

Abstract

Many prokaryote species are known to have fluid genomes, with different strains varying markedly in accessory gene content through the combined action of gene loss, gene gain via lateral transfer, as well as gene duplication. However, the evolutionary forces determining genome fluidity are not yet well understood. We here for the first time systematically analyse the degree to which this distinctive genomic feature differs between bacterial species. We find that genome fluidity is positively correlated with synonymous nucleotide diversity of the core genome, a measure of effective population size N. No effects of genome size, phylogeny or homologous recombination rate on genome fluidity were found. Our findings are consistent with a scenario where accessory gene content turnover is for a large part dictated by neutral evolution.

摘要

已知许多原核生物物种具有流动基因组,不同菌株通过基因丢失、横向转移导致的基因获得以及基因重复的共同作用,在辅助基因含量上存在显著差异。然而,决定基因组流动性的进化力量尚未得到很好的理解。我们首次系统地分析了这种独特的基因组特征在细菌物种之间的差异程度。我们发现基因组流动性与核心基因组的同义核苷酸多样性呈正相关,同义核苷酸多样性是有效种群大小N的一个衡量指标。未发现基因组大小、系统发育或同源重组率对基因组流动性有影响。我们的研究结果与一种情况一致,即辅助基因含量的更替在很大程度上由中性进化决定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad8/5520154/d2fcfd3637ba/ismej201736f1.jpg

相似文献

1
Prokaryote genome fluidity is dependent on effective population size.
ISME J. 2017 Jul;11(7):1719-1721. doi: 10.1038/ismej.2017.36. Epub 2017 Apr 14.
2
Increased Mutation Rate Is Linked to Genome Reduction in Prokaryotes.
Curr Biol. 2020 Oct 5;30(19):3848-3855.e4. doi: 10.1016/j.cub.2020.07.034. Epub 2020 Aug 6.
5
Factors driving effective population size and pan-genome evolution in bacteria.
BMC Evol Biol. 2018 Oct 12;18(1):153. doi: 10.1186/s12862-018-1272-4.
6
Pseudogenes act as a neutral reference for detecting selection in prokaryotic pangenomes.
Nat Ecol Evol. 2024 Feb;8(2):304-314. doi: 10.1038/s41559-023-02268-6. Epub 2024 Jan 4.
7
Population genomics and the bacterial species concept.
Methods Mol Biol. 2009;532:367-77. doi: 10.1007/978-1-60327-853-9_21.
8
Rickettsial evolution in the light of comparative genomics.
Biol Rev Camb Philos Soc. 2011 May;86(2):379-405. doi: 10.1111/j.1469-185X.2010.00151.x. Epub 2010 Aug 17.
9
[Homologous recombination among bacterial genomes: the measurement and identification].
Yi Chuan. 2016 Feb;38(2):137-43. doi: 10.16288/j.yczz.15-382.
10
Rates of Lateral Gene Transfer in Prokaryotes: High but Why?
Trends Microbiol. 2015 Oct;23(10):598-605. doi: 10.1016/j.tim.2015.07.006.

引用本文的文献

1
Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution.
mSystems. 2025 Mar 18;10(3):e0153824. doi: 10.1128/msystems.01538-24. Epub 2025 Feb 24.
4
A universal and constant rate of gene content change traces pangenome flux to LUCA.
FEMS Microbiol Lett. 2024 Jan 9;371. doi: 10.1093/femsle/fnae068.
6
Bacterial lifestyle shapes pangenomes.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2320170121. doi: 10.1073/pnas.2320170121. Epub 2024 May 14.
7
Epistasis, core-genome disharmony, and adaptation in recombining bacteria.
mBio. 2024 Jun 12;15(6):e0058124. doi: 10.1128/mbio.00581-24. Epub 2024 Apr 29.
8
Patterns of Change in Nucleotide Diversity Over Gene Length.
Genome Biol Evol. 2024 Apr 2;16(4). doi: 10.1093/gbe/evae078.
9
Evolutionary dynamics of the accessory genomes of .
mSphere. 2024 Apr 23;9(4):e0075123. doi: 10.1128/msphere.00751-23. Epub 2024 Mar 19.
10
Challenges in estimating effective population sizes from metagenome-assembled genomes.
Front Microbiol. 2024 Jan 5;14:1331583. doi: 10.3389/fmicb.2023.1331583. eCollection 2023.

本文引用的文献

1
2
Rates of Lateral Gene Transfer in Prokaryotes: High but Why?
Trends Microbiol. 2015 Oct;23(10):598-605. doi: 10.1016/j.tim.2015.07.006.
3
The extent of genome flux and its role in the differentiation of bacterial lineages.
Genome Biol Evol. 2014 Jun 12;6(6):1514-29. doi: 10.1093/gbe/evu123.
4
Minor fitness costs in an experimental model of horizontal gene transfer in bacteria.
Mol Biol Evol. 2014 May;31(5):1220-7. doi: 10.1093/molbev/msu076. Epub 2014 Feb 17.
5
Horizontal gene transfer and the evolution of bacterial and archaeal population structure.
Trends Genet. 2013 Mar;29(3):170-5. doi: 10.1016/j.tig.2012.12.006. Epub 2013 Jan 15.
6
A neutral theory of genome evolution and the frequency distribution of genes.
BMC Genomics. 2012 May 21;13:196. doi: 10.1186/1471-2164-13-196.
7
The infinitely many genes model for the distributed genome of bacteria.
Genome Biol Evol. 2012;4(4):443-56. doi: 10.1093/gbe/evs016. Epub 2012 Feb 21.
8
Genomic fluidity: an integrative view of gene diversity within microbial populations.
BMC Genomics. 2011 Jan 13;12:32. doi: 10.1186/1471-2164-12-32.
9
Evolution of the mutation rate.
Trends Genet. 2010 Aug;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub 2010 Jun 30.
10
Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths.
PLoS Genet. 2009 Jan;5(1):e1000344. doi: 10.1371/journal.pgen.1000344. Epub 2009 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验