上位性、核心基因组不和谐与重组细菌的适应

Epistasis, core-genome disharmony, and adaptation in recombining bacteria.

机构信息

School of Biological Sciences, University of Reading, Reading, United Kingdom.

Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.

出版信息

mBio. 2024 Jun 12;15(6):e0058124. doi: 10.1128/mbio.00581-24. Epub 2024 Apr 29.

Abstract

Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens and that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria , an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.

摘要

通过水平基因转移 (HGT) 对短 DNA 片段进行重组,可以引入有益的等位基因,通过负遗传相互作用造成基因组失调,并通过正遗传相互作用产生适应性基因组合。对于非核心 (辅助) 基因,负遗传相互作用的代价可能很小,因为进入的基因与受体基因组没有共同进化,并且经常作为与主要影响紧密相关的紧密连接盒观察到。相比之下,种间重组在核心基因组中预计很少见,因为破坏性等位基因替换很可能引入负遗传相互作用。那么,同源重组在细菌基因组的核心中为何如此常见?为了解开这个谜团,我们利用一个特殊的模型系统,即众所周知的肠道病原体 和 ,它们在核心基因组中的种间基因流动幅度非常大。正如预期的那样,HGT 确实破坏了共同适应的等位基因配对,这是负遗传相互作用的间接证据。然而,多次 HGT 事件使基因组在传入等位基因之间恢复了共同适应,即使在核心代谢基因(例如,甲酸脱氢酶)中也是如此。这些发现表明,即使对于复杂性状,遗传联盟也可以被分离、转移,并在新的遗传背景下独立重新建立,从而促进适应度峰值之间的转变。在这个例子中,两步重组过程与适应农业小生境的 有关。重要性细菌之间的基因交换塑造了微生物世界。从获得抗生素抗性基因到关于细菌物种本质的基本问题,这种强大的进化力量让科学家们困惑了几十年。然而,种间基因的混合取决于一个悖论:一方面,通过赋予新的功能来促进适应;另一方面,可能会引入不和谐的基因组合(负遗传相互作用),这些组合将受到选择的反对。通过对肠道细菌的自然种群进行跨学科分析,这是长距离混合的理想例子,我们证明了基因可以独立跨越物种边界,并在受体基因组中重新组合成功能网络。双基因相互作用的积极影响似乎是通过扩展代谢能力和通过种间杂交促进生态位转移来适应的。这一发现挑战了传统观念,并强调了通过种间渐渗来实现多基因性状多步骤进化的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf9a/11237541/c2115dca98ad/mbio.00581-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索