Selles Benjamin, Zannini Flavien, Couturier Jérémy, Jacquot Jean-Pierre, Rouhier Nicolas
UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.
PLoS One. 2017 Mar 31;12(3):e0174753. doi: 10.1371/journal.pone.0174753. eCollection 2017.
Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution.
蛋白质二硫键异构酶绝大多数是多模块氧化还原催化剂,能够催化二硫键的形成、还原或异构化。我们在此展示了三种不同杨树PDI异构体的生化特性。PDI-A的特征是具有单个催化性Trx模块,即所谓的a结构域,而PDI-L1a和PDI-M分别呈现a-b-b'-a'和a°-a-b结构。使用纯化的重组蛋白和一系列模型底物,如胰岛素、NADPH硫氧还蛋白还原酶、NADP苹果酸脱氢酶(NADP-MDH)、过氧化物酶或核糖核酸酶A,在体外测试了它们的活性。我们证明,尽管WCKHC活性位点特征的半胱氨酸能够在pH 7.0时形成氧化还原中点电位为-170 mV的二硫键,但PDI-A没有表现出任何通常报道的活性。在大肠杆菌中表达并经厌氧纯化后,它能够结合[Fe2S2]簇,这一事实可能表明它在二硫醇-二硫键交换反应中没有功能。另外两种蛋白能够催化氧化或还原反应,在大多数情况下,PDI-L1a更有效,不过与PDI-M不同的是,它无法激活非生理性底物NADP-MDH。为了进一步评估PDI-M催化结构域的作用,每个a结构域中的双半胱氨酸基序已被独立突变。结果表明,两个a结构域似乎相互连接,并且a°模块优先催化氧化反应,而a模块催化还原反应,这与pH 7.0时各自-170 mV和-190 mV的氧化还原电位一致。总体而言,这些体外实验结果表明,a和b结构域的数量和位置会影响PDI的氧化还原特性和底物识别(包括电子供体和受体),这有助于理解为什么这个蛋白家族在进化过程中会扩张。