Cadet Jean, Davies Kelvin J A
Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine de des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA.
Free Radic Biol Med. 2017 Jun;107:2-12. doi: 10.1016/j.freeradbiomed.2017.03.030. Epub 2017 Mar 28.
This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes.
这篇介绍性文章应被视为《自由基生物学与医学》特刊的前言,该特刊致力于探讨氧化损伤DNA及其修复这一重要主题。本期特刊献给托马斯·林达尔教授,他因在氧化损伤DNA修复领域的开创性发现而成为2015年诺贝尔化学奖的共同获得者。在过去几年中,已经非常清楚地表明,DNA氧化是在富氧环境中生命的一个主要后果。与此同时,在存在氧气且不断面临有害DNA突变和缺失威胁的情况下,通过大量DNA修复酶的进化,生物得以生存。本期氧化损伤DNA与修复特刊中的文章详细阐述了细胞内DNA被氧化损伤的反应,以及生物体通过修复过程在这种攻击下存活的酶促反应和途径。