Bouhours Brice, Gjoni Enida, Kochubey Olexiy, Schneggenburger Ralf
Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
J Neurosci. 2017 Apr 26;37(17):4604-4617. doi: 10.1523/JNEUROSCI.3736-16.2017. Epub 2017 Mar 31.
Parvalbumin-expressing inhibitory neurons in the mammalian CNS are specialized for fast transmitter release at their output synapses. However, the Ca sensor(s) used by identified inhibitory synapses, including the output synapses of parvalbumin-expressing inhibitory neurons, have only recently started to be addressed. Here, we investigated the roles of Syt1 and Syt2 at two types of fast-releasing inhibitory connections in the mammalian CNS: the medial nucleus of the trapezoid body to lateral superior olive glycinergic synapse, and the basket/stellate cell-Purkinje GABAergic synapse in the cerebellum. We used conditional and conventional knock-out (KO) mouse lines, with viral expression of Cre-recombinase and a light-activated ion channel for optical stimulation of the transduced fibers, to produce Syt1-Syt2 double KO synapses Surprisingly, we found that KO of Syt2 alone had only minor effects on evoked transmitter release, despite the clear presence of the protein in inhibitory nerve terminals revealed by immunohistochemistry. We show that Syt1 is weakly coexpressed at these inhibitory synapses and must be genetically inactivated together with Syt2 to achieve a significant reduction and desynchronization of fast release. Thus, our work identifies the functionally relevant Ca sensor(s) at fast-releasing inhibitory synapses and shows that two major Syt isoforms can cooperate to mediate release at a given synaptic connection. During synaptic transmission, the influx of Ca into the presynaptic nerve terminal activates a Ca sensor for vesicle fusion, a crucial step in the activity-dependent release of neurotransmitter. Synaptotagmin (Syt) proteins, and especially Syt1 and Syt2, have been identified as the Ca sensor at excitatory synapses, but the Ca sensor(s) at inhibitory synapses in native brain tissue are not well known. We found that both Syt1 and Syt2 need to be genetically inactivated to cause a significant reduction of activity-evoked release at two types of fast inhibitory synapses in mouse brain. Thus, we identify Syt2 as a functionally important Ca sensor at fast-releasing inhibitory synapses, and show that Syt1 and Syt2 can redundantly control transmitter release at specific brain synapses.
哺乳动物中枢神经系统中表达小白蛋白的抑制性神经元在其输出突触处专门用于快速递质释放。然而,包括表达小白蛋白的抑制性神经元的输出突触在内的已确定抑制性突触所使用的钙传感器,直到最近才开始得到研究。在这里,我们研究了突触结合蛋白1(Syt1)和突触结合蛋白2(Syt2)在哺乳动物中枢神经系统中两种快速释放抑制性连接中的作用:梯形体内侧核到外侧上橄榄核甘氨酸能突触,以及小脑中篮状/星状细胞 - 浦肯野细胞GABA能突触。我们使用条件性和传统基因敲除(KO)小鼠品系,通过病毒表达Cre重组酶和用于光学刺激转导纤维的光激活离子通道,来产生Syt1 - Syt2双基因敲除突触。令人惊讶的是,我们发现单独敲除Syt2对诱发的递质释放只有轻微影响,尽管免疫组织化学显示抑制性神经末梢中明显存在该蛋白。我们表明,Sytl在这些抑制性突触中弱共表达,并且必须与Syt2一起进行基因失活才能实现快速释放的显著减少和去同步化。因此,我们的工作确定了快速释放抑制性突触中功能相关的钙传感器,并表明两种主要的Syt异构体可以协同介导给定突触连接处的释放。在突触传递过程中,钙离子流入突触前神经末梢会激活用于囊泡融合的钙传感器,这是神经递质活性依赖性释放的关键步骤。突触结合蛋白(Syt)家族蛋白,尤其是Syt1和Syt2,已被确定为兴奋性突触中的钙传感器,但天然脑组织中抑制性突触的钙传感器尚不清楚。我们发现,在小鼠脑中的两种快速抑制性突触中,Syt1和Syt2都需要进行基因失活才能导致活性诱发释放的显著减少。因此,我们确定Syt2是快速释放抑制性突触中功能重要的钙传感器,并表明Syt1和Syt2可以在特定脑突触中冗余控制递质释放。