Suppr超能文献

贝叶斯泊松-对数正态模型在多性状多环境下基于基因组的计数数据分析中的应用。

A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction.

机构信息

Facultad de Telemática, Universidad de Colima, 28040, México.

Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430 Jalisco, México.

出版信息

G3 (Bethesda). 2017 May 5;7(5):1595-1606. doi: 10.1534/g3.117.039974.

Abstract

When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait at a time taking into account genotype × environment interaction (G × E), because there is a lack of comprehensive models that simultaneously take into account the correlated counting traits and G × E. For this reason, in this study we propose a multiple-trait and multiple-environment model for count data. The proposed model was developed under the Bayesian paradigm for which we developed a Markov Chain Monte Carlo (MCMC) with noninformative priors. This allows obtaining all required full conditional distributions of the parameters leading to an exact Gibbs sampler for the posterior distribution. Our model was tested with simulated data and a real data set. Results show that the proposed multi-trait, multi-environment model is an attractive alternative for modeling multiple count traits measured in multiple environments.

摘要

当植物科学家希望对多个个体在多个环境中测量的多个性状进行基因组预测时,最常用的分析策略是一次使用一个性状,同时考虑基因型×环境互作(G×E),因为缺乏同时考虑相关计数性状和 G×E 的综合模型。出于这个原因,在本研究中,我们提出了一个用于计数数据的多性状和多环境模型。所提出的模型是在贝叶斯范例下开发的,我们为此开发了一个具有非信息先验的马尔可夫链蒙特卡罗(MCMC)。这使得可以获得参数的所有必需的完全条件分布,从而为后验分布生成精确的吉布斯抽样器。我们的模型用模拟数据和真实数据集进行了测试。结果表明,所提出的多性状、多环境模型是对多个环境中测量的多个计数性状进行建模的一种有吸引力的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b0/5427491/975e1102cc89/1595f1.jpg

相似文献

2
A Genomic Bayesian Multi-trait and Multi-environment Model.
G3 (Bethesda). 2016 Sep 8;6(9):2725-44. doi: 10.1534/g3.116.032359.
3
A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction.
G3 (Bethesda). 2017 Jun 7;7(6):1833-1853. doi: 10.1534/g3.117.041202.
4
Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction.
G3 (Bethesda). 2016 May 3;6(5):1165-77. doi: 10.1534/g3.116.028118.
5
Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems.
G3 (Bethesda). 2018 Jan 4;8(1):131-147. doi: 10.1534/g3.117.300309.
7
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
G3 (Bethesda). 2017 Jan 5;7(1):41-53. doi: 10.1534/g3.116.035584.
8

引用本文的文献

1
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms.
Plants (Basel). 2022 May 27;11(11):1430. doi: 10.3390/plants11111430.
2
Prediction of count phenotypes using high-resolution images and genomic data.
G3 (Bethesda). 2021 Feb 5;11(2):jkab035. doi: 10.1093/g3journal/jkab035. eCollection 2021 Feb.
3
A zero altered Poisson random forest model for genomic-enabled prediction.
G3 (Bethesda). 2021 Feb 9;11(2). doi: 10.1093/g3journal/jkaa057.
4
Application of Genomic Big Data in Plant Breeding:Past, Present, and Future.
Plants (Basel). 2020 Oct 28;9(11):1454. doi: 10.3390/plants9111454.
5
A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data.
G3 (Bethesda). 2020 Nov 5;10(11):4177-4190. doi: 10.1534/g3.120.401631.
7
A singular value decomposition Bayesian multiple-trait and multiple-environment genomic model.
Heredity (Edinb). 2019 Apr;122(4):381-401. doi: 10.1038/s41437-018-0109-7. Epub 2018 Aug 17.
8
Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems.
G3 (Bethesda). 2018 Jan 4;8(1):131-147. doi: 10.1534/g3.117.300309.

本文引用的文献

1
A Genomic Bayesian Multi-trait and Multi-environment Model.
G3 (Bethesda). 2016 Sep 8;6(9):2725-44. doi: 10.1534/g3.116.032359.
2
Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction.
G3 (Bethesda). 2016 May 3;6(5):1165-77. doi: 10.1534/g3.116.028118.
3
Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model.
Heredity (Edinb). 2015 Jul;115(1):29-36. doi: 10.1038/hdy.2015.9. Epub 2015 Apr 15.
5
Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars.
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8057-62. doi: 10.1073/pnas.1217133110. Epub 2013 Apr 29.
6
A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods.
Accid Anal Prev. 2008 May;40(3):964-75. doi: 10.1016/j.aap.2007.11.002. Epub 2007 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验