Suppr超能文献

使用基因型×环境互作核模型的贝叶斯基因组预测

Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

作者信息

Cuevas Jaime, Crossa José, Montesinos-López Osval A, Burgueño Juan, Pérez-Rodríguez Paulino, de Los Campos Gustavo

机构信息

Universidad de Quintana Roo, Chetumal, Quintana Roo, México.

Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), 06600 México D. F., México

出版信息

G3 (Bethesda). 2017 Jan 5;7(1):41-53. doi: 10.1534/g3.116.035584.

Abstract

The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text].

摘要

植物育种中基因型×环境(G×E)互作现象会降低选择准确性,从而对遗传增益产生负面影响。最近已开发出几种纳入G×E的基因组预测模型,并应用于植物育种计划的基因组选择中。用于评估多环境G×E互作的基因组预测模型是单环境模型的扩展,有其优点和局限性。在本研究中,我们提出了两种多环境贝叶斯基因组模型:第一种模型考虑遗传效应[公式:见正文],可通过环境间遗传相关性的方差协方差矩阵与通过标记得到的基因组核的克罗内克积,在两种线性核方法(线性(基因组最佳线性无偏预测器,GBLUP)和高斯(高斯核,GK))下进行评估。另一种模型具有与第一种模型相同的遗传成分[公式:见正文],再加上一个额外成分F: ,该成分捕获了随机效应[公式:见正文]未捕获的环境间随机效应。我们使用了之前在不同研究中使用过的五个国际玉米小麦改良中心(CIMMYT)数据集(一个玉米数据集和四个小麦数据集)。结果表明,包含G×E的模型预测能力总是优于单环境模型,在五个数据集上,对于具有[公式:见正文]的多环境模型,其预测能力高于仅具有u的多环境模型的情况,使用GBLUP时占85%,使用GK时占45%。后一结果表明,在通过随机效应[公式:见正文]进行调整后,纳入随机效应f对提高预测能力仍然有益。

相似文献

引用本文的文献

1
Enhancing wheat genomic prediction by a hybrid kernel approach.通过混合核方法增强小麦基因组预测
Front Plant Sci. 2025 Aug 1;16:1605202. doi: 10.3389/fpls.2025.1605202. eCollection 2025.
4
Incorporating gene expression and environment for genomic prediction in wheat.整合基因表达与环境用于小麦基因组预测
Front Plant Sci. 2025 May 6;16:1506434. doi: 10.3389/fpls.2025.1506434. eCollection 2025.
8
Modeling QTL-by-environment interactions for multi-parent populations.多亲群体数量性状基因座与环境互作的建模
Front Plant Sci. 2024 Jul 31;15:1410851. doi: 10.3389/fpls.2024.1410851. eCollection 2024.

本文引用的文献

9
Efficient methods to compute genomic predictions.计算基因组预测的有效方法。
J Dairy Sci. 2008 Nov;91(11):4414-23. doi: 10.3168/jds.2007-0980.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验