Rimboud Mickaël, Barakat Mohamed, Bergel Alain, Erable Benjamin
Laboratoire de Génie Chimique, CNRS-Université de Toulouse, 4 Allée Emile Monso, 31432 Toulouse Cedex 04, France; Laboratoire d'Ecologie Microbienne de la Rhizosphère et des Environnements Extrêmes (LEMIRE), BIAM, UMR 7265, CEA-CNRS-Aix Marseille Université, CEA Cadarache, 13108 Saint Paul Lez Durance, France.
Laboratoire d'Ecologie Microbienne de la Rhizosphère et des Environnements Extrêmes (LEMIRE), BIAM, UMR 7265, CEA-CNRS-Aix Marseille Université, CEA Cadarache, 13108 Saint Paul Lez Durance, France.
Bioelectrochemistry. 2017 Aug;116:24-32. doi: 10.1016/j.bioelechem.2017.03.001. Epub 2017 Mar 6.
Six biocathodes catalyzing oxygen reduction were designed from the same environmental inoculum but using three different methods. Two were formed freely at open circuit potential, two using conventional aerobic polarization at -0.2V/SCE and two by reversion of already established acetate-fed bioanodes. Observation of the biofilms by SEM and epifluorescence microscopy revealed that reversible bioelectrodes had the densest biofilms. Electrochemical characterization revealed two different redox systems for oxygen reduction, at -0.30 and +0.23V/SCE. The biocathodes formed under aerobic polarization gave higher electrocalatytic performance for O reduction, due to production of the redox systems at +0.23V/SCE. Analyses of the bacterial communities on the biocathodes by 16S-rRNA pyrosequencing showed different selection (or enrichment) of microorganisms depending on the method used. This study highlights how the method chosen for designing oxygen biocathodes can affect the cathode coverage, the selection of bacterial populations and the electrochemical performance.
六个催化氧还原的生物阴极由相同的环境接种物设计而成,但采用了三种不同的方法。两个在开路电位下自由形成,两个采用在-0.2V/SCE下的传统好氧极化,还有两个通过已建立的以乙酸盐为食的生物阳极的反转形成。通过扫描电子显微镜(SEM)和落射荧光显微镜对生物膜的观察表明,可逆生物电极具有最致密的生物膜。电化学表征揭示了氧还原的两种不同氧化还原系统,分别在-0.30和+0.23V/SCE。在好氧极化下形成的生物阴极对氧还原具有更高的电催化性能,这是由于在+0.23V/SCE产生了氧化还原系统。通过16S-rRNA焦磷酸测序对生物阴极上的细菌群落进行分析表明,根据所使用的方法,微生物的选择(或富集)有所不同。这项研究突出了设计氧生物阴极所选择的方法如何影响阴极覆盖率、细菌种群的选择以及电化学性能。