Suppr超能文献

应力控制下静态与动态压缩时生长板软骨细胞的原位变形

In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression.

作者信息

Zimmermann Elizabeth A, Bouguerra Séréna, Londoño Irene, Moldovan Florina, Aubin Carl-Éric, Villemure Isabelle

机构信息

Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Canada; Research Center at Sainte-Justine University Hospital, Montréal, Canada.

Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Canada.

出版信息

J Biomech. 2017 May 3;56:76-82. doi: 10.1016/j.jbiomech.2017.03.008. Epub 2017 Mar 11.

Abstract

Longitudinal bone growth in children/adolescents occurs through endochondral ossification at growth plates and is influenced by mechanical loading, where increased compression decreases growth (i.e., Hueter-Volkmann Law). Past in vivo studies on static vs dynamic compression of growth plates indicate that factors modulating growth rate might lie at the cellular level. Here, in situ viscoelastic deformation of hypertrophic chondrocytes in growth plate explants undergoing stress-controlled static vs dynamic loading conditions was investigated. Growth plate explants from the proximal tibia of pre-pubertal rats were subjected to static vs dynamic stress-controlled mechanical tests. Stained hypertrophic chondrocytes were tracked before and after mechanical testing with a confocal microscope to derive volumetric, axial and lateral cellular strains. Axial strain in hypertrophic chondrocytes was similar for all groups, supporting the mean applied compressive stress's correlation with bone growth rate and hypertrophic chondrocyte height in past studies. However, static conditions resulted in significantly higher lateral (p<0.001) and volumetric cellular strains (p≤0.015) than dynamic conditions, presumably due to the growth plate's viscoelastic nature. Sustained compression in stress-controlled static loading results in continued time-dependent cellular deformation; conversely, dynamic groups have less volumetric strain because the cyclically varying stress limits time-dependent deformation. Furthermore, high frequency dynamic tests showed significantly lower volumetric strain (p=0.002) than low frequency conditions. Mechanical loading protocols could be translated into treatments to correct or halt progression of bone deformities in children/adolescents. Mimicking physiological stress-controlled dynamic conditions may have beneficial effects at the cellular level as dynamic tests are associated with limited lateral and volumetric cellular deformation.

摘要

儿童/青少年的纵向骨生长通过生长板处的软骨内成骨发生,并受机械负荷影响,其中增加的压缩会降低生长(即休特-福尔克曼定律)。过去关于生长板静态与动态压缩的体内研究表明,调节生长速率的因素可能存在于细胞水平。在此,研究了生长板外植体中肥大软骨细胞在应力控制的静态与动态加载条件下的原位粘弹性变形。对青春期前大鼠胫骨近端的生长板外植体进行静态与动态应力控制的力学测试。在力学测试前后,用共聚焦显微镜跟踪染色的肥大软骨细胞,以得出细胞的体积、轴向和横向应变。所有组肥大软骨细胞的轴向应变相似,这支持了过去研究中平均施加的压缩应力与骨生长速率以及肥大软骨细胞高度的相关性。然而,静态条件下的横向细胞应变(p<0.001)和体积细胞应变(p≤0.015)显著高于动态条件,这可能是由于生长板的粘弹性性质。应力控制的静态加载中的持续压缩导致细胞随时间持续变形;相反,动态组的体积应变较小,因为周期性变化的应力限制了随时间的变形。此外,高频动态测试显示体积应变显著低于低频条件(p=0.002)。机械加载方案可转化为治疗方法,以纠正或阻止儿童/青少年骨畸形的进展。模拟生理应力控制的动态条件可能在细胞水平上具有有益效果,因为动态测试与有限的横向和体积细胞变形相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验