Suppr超能文献

生长板软骨细胞的机械刺激:既往方法与未来方向。

Mechanical stimulation of growth plate chondrocytes: Previous approaches and future directions.

作者信息

Lee D, Erickson A, Dudley A T, Ryu S

机构信息

Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588.

Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198.

出版信息

Exp Mech. 2019 Nov;59(9):1261-1274. doi: 10.1007/s11340-018-0424-1. Epub 2018 Aug 17.

Abstract

Growth plate cartilage resides near the ends of long bones and is the primary driver of skeletal growth. During growth, both intrinsically and extrinsically generated mechanical stresses act on chondrocytes in the growth plate. Although the role of mechanical stresses in promoting tissue growth and homeostasis has been strongly demonstrated in articular cartilage of the major skeletal joints, effects of stresses on growth plate cartilage and bone growth are not as well established. Here, we review the literature on mechanobiology in growth plate cartilage at macroscopic and microscopic scales, with particular emphasis on comparison of results obtained using different methodological approaches, as well as from whole animal and experiments. To answer these questions, macroscopic mechanical stimulators have been developed and applied to study mechanobiology of growth plate cartilage and chondrocytes. However, the previous approaches have tested a limited number of stress conditions, and the mechanobiology of a single chondrocyte has not been well studied due to limitations of the macroscopic mechanical stimulators. We explore how microfluidics devices can overcome these limitations and improve current understanding of growth plate chondrocyte mechanobiology. In particular, microfluidic devices can generate multiple stress conditions in a single platform and enable real-time monitoring of metabolism and cellular behavior using optical microscopy. Systematic characterization of the chondrocytes using microfluidics will enhance our understanding of how to use mechanical stresses to control the bone growth and the properties of tissue-engineered growth plate cartilage.

摘要

生长板软骨位于长骨末端附近,是骨骼生长的主要驱动因素。在生长过程中,内在和外在产生的机械应力作用于生长板中的软骨细胞。尽管机械应力在促进主要骨骼关节的关节软骨组织生长和稳态方面的作用已得到充分证明,但应力对生长板软骨和骨骼生长的影响尚未完全明确。在这里,我们回顾了关于生长板软骨宏观和微观尺度力学生物学的文献,特别强调比较使用不同方法以及在整体动物和实验中获得的结果。为了回答这些问题,已经开发并应用了宏观机械刺激器来研究生长板软骨和软骨细胞的力学生物学。然而,先前的方法测试的应力条件有限,并且由于宏观机械刺激器的局限性,单个软骨细胞的力学生物学尚未得到充分研究。我们探讨微流控装置如何克服这些局限性并增进目前对生长板软骨细胞力学生物学的理解。特别是,微流控装置可以在单个平台上产生多种应力条件,并能够使用光学显微镜实时监测代谢和细胞行为。使用微流控技术对软骨细胞进行系统表征将增进我们对如何利用机械应力来控制骨骼生长和组织工程生长板软骨特性的理解。

相似文献

1
Mechanical stimulation of growth plate chondrocytes: Previous approaches and future directions.
Exp Mech. 2019 Nov;59(9):1261-1274. doi: 10.1007/s11340-018-0424-1. Epub 2018 Aug 17.
6
Growth plate mechanics and mechanobiology. A survey of present understanding.
J Biomech. 2009 Aug 25;42(12):1793-803. doi: 10.1016/j.jbiomech.2009.05.021. Epub 2009 Jun 21.
7
Multiscale modeling of growth plate cartilage mechanobiology.
Biomech Model Mechanobiol. 2017 Apr;16(2):667-679. doi: 10.1007/s10237-016-0844-8. Epub 2016 Oct 21.
9
Biomechanical properties and mechanobiology of the articular chondrocyte.
Am J Physiol Cell Physiol. 2013 Dec 15;305(12):C1202-8. doi: 10.1152/ajpcell.00242.2013. Epub 2013 Sep 25.

引用本文的文献

1
Mechanical stimulation in 2D: A potent accelerator of matrix mineralization in ATDC5 chondrogenic cells.
J Orthop. 2025 May 31;70:173-182. doi: 10.1016/j.jor.2025.05.058. eCollection 2025 Dec.
2
Development of the mechanoresponsive pericellular matrix of chondrons.
Sci Adv. 2025 May 2;11(18):eado6644. doi: 10.1126/sciadv.ado6644.
3
Hand skeletal features of children and adolescents with different growth statuses and periods.
Quant Imaging Med Surg. 2024 Mar 15;14(3):2528-2538. doi: 10.21037/qims-23-26. Epub 2024 Mar 5.
5
Mucopolysaccharidosis IVA: Current Disease Models and Drawbacks.
Int J Mol Sci. 2023 Nov 9;24(22):16148. doi: 10.3390/ijms242216148.
6
Mechanical loading due to muscle movement regulates establishment of the collagen network in the developing murine skeleton.
R Soc Open Sci. 2023 Oct 18;10(10):231023. doi: 10.1098/rsos.231023. eCollection 2023 Oct.
7
Novel dual: rod plate system for EOS improves vertebral wedging and permits spinal growth.
J Orthop Surg Res. 2023 Sep 29;18(1):738. doi: 10.1186/s13018-023-04094-9.
8
deletion in chondrocytes causes vertebral defects by reducing MEF2C/PTEN/AKT signaling.
Genes Dis. 2023 Mar 24;11(2):964-977. doi: 10.1016/j.gendis.2023.02.012. eCollection 2024 Mar.
9
Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
Lab Chip. 2023 Aug 8;23(16):3537-3560. doi: 10.1039/d3lc00094j.
10
Bone wax in the treatment of partial epiphysiodesis of distal femoral growth plate: Case report at 10-year follow-up.
Front Surg. 2022 Oct 18;9:968214. doi: 10.3389/fsurg.2022.968214. eCollection 2022.

本文引用的文献

1
Mechanical loading regulates organization of the actin cytoskeleton and column formation in postnatal growth plate.
Mol Biol Cell. 2017 Jul 7;28(14):1862-1870. doi: 10.1091/mbc.E17-02-0084. Epub 2017 May 24.
2
In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression.
J Biomech. 2017 May 3;56:76-82. doi: 10.1016/j.jbiomech.2017.03.008. Epub 2017 Mar 11.
4
The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes.
In Vitro Cell Dev Biol Anim. 2017 Feb;53(2):141-148. doi: 10.1007/s11626-016-0090-5. Epub 2016 Sep 7.
5
Regulation of Long Bone Growth in Vertebrates; It Is Time to Catch Up.
Endocr Rev. 2015 Dec;36(6):646-80. doi: 10.1210/er.2015-1048. Epub 2015 Oct 20.
6
Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
J Matern Fetal Neonatal Med. 2016;29(7):1046-54. doi: 10.3109/14767058.2015.1038518. Epub 2015 Jun 15.
7
Compressive mechanical modulation alters the viability of growth plate chondrocytes in vitro.
J Orthop Res. 2015 Nov;33(11):1587-93. doi: 10.1002/jor.22951. Epub 2015 Jun 12.
9
Microfluidic organs-on-chips.
Nat Biotechnol. 2014 Aug;32(8):760-72. doi: 10.1038/nbt.2989.
10
In vivo dynamic loading reduces bone growth without histomorphometric changes of the growth plate.
J Orthop Res. 2014 Sep;32(9):1129-36. doi: 10.1002/jor.22664. Epub 2014 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验