Brain Korea 21 Plus Program, School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do, 16229, Republic of Korea.
Harmful Algae. 2017 Mar;63:109-118. doi: 10.1016/j.hal.2017.02.001. Epub 2017 Feb 17.
Red tides dominated by Cochlodinium polykrikoides often lead to great economic losses and some methods of controlling these red tides have been developed. However, due to possible adverse effects and the short persistence of their control actions, safer and more effective sustainable methods should be developed. The non-toxic dinoflagellate Alexandrium pohangense is known to grow well mixotrophically feeding on C. polykrikoides, and populations are also maintained by photosynthesis. Thus, compared with other methods, the use of mass-cultured A. pohangense is safer and the effects can be maintained in the long term. To develop an effective method, the concentrations of A. pohangense cells and culture filtrate resulting in the death of C. polykrikoides cells were determined by adding the cells or filtrates to cultured and natural populations of C. polykrikoides. Cultures containing 800 A. pohangense cells ml eliminated almost all cultured C. polykrikoides cells at a concentration of 1000 cells ml within 24h. Furthermore, the addition of A. pohangense cultures at a concentration of 800 cells ml to C. polykrikoides populations from a red-tide patch resulted in the death of most C. polykrikoides cells (99.8%) within 24h. This addition of A. pohangense cells also lowered the abundances of total phototrophic dinoflagellates excluding C. polykrikoides, but did not lower the abundance of total diatoms. Filtrate from 800cellsmlA. pohangense cultures reduced the population of cultured C. polykrikoides by 80% within 48h. This suggests that A. pohangense cells eliminate C. polykrikoides by feeding and releasing extracellular compounds. Over time, A. pohangense concentrations gradually increased when incubated with C. polykrikoides. Thus, an increase in the concentration of A. pohangense by feeding may lead to A. pohangense cells eliminating more C. polykrikoides cells in larger volumes. Based on the results of this study, a 1m stock culture of A. pohangense at 4000cellsml is calculated to remove all C. polykrikoides cells in ca. 200m within 6 days. Furthermore, maintenance of A. pohangense populations through photosynthesis prepared A. pohangense to eliminate C. polykrikoides cells in future red-tide patches. Moreover, incubation of A. pohangense at 2000 cells ml with juvenile olive flounder Paralichthys olivaceus for 3 days did not result in the death of fish. Therefore, the method developed in this study is a safe and effective way of controlling C. polykrikoides populations and can be easily applied to aqua-tanks on land.
由多列角毛藻主导的赤潮经常导致巨大的经济损失,因此已经开发了一些控制赤潮的方法。然而,由于可能产生的副作用以及控制作用的持续时间短,应该开发更安全、更有效的可持续方法。无毒双鞭甲藻赤潮异弯藻已知可以很好地混养,以多列角毛藻为食,并通过光合作用维持种群。因此,与其他方法相比,使用大量培养的赤潮异弯藻更安全,并且可以长期维持效果。为了开发有效的方法,通过将细胞或滤液添加到培养的和天然的多列角毛藻种群中,确定导致多列角毛藻细胞死亡的赤潮异弯藻细胞的浓度和培养液滤液的浓度。在 24 小时内,浓度为 1000 个细胞 ml 的 800 个赤潮异弯藻细胞可以消除几乎所有培养的多列角毛藻细胞。此外,在赤潮斑块中,将浓度为 800 个细胞 ml 的赤潮异弯藻培养液添加到多列角毛藻种群中,在 24 小时内导致大多数多列角毛藻细胞(99.8%)死亡。这种赤潮异弯藻细胞的添加还降低了不包括多列角毛藻的总浮游甲藻的丰度,但并未降低总硅藻的丰度。来自 800 细胞 ml 的赤潮异弯藻培养液滤液在 48 小时内将培养的多列角毛藻的种群减少了 80%。这表明赤潮异弯藻通过摄食和释放细胞外化合物来消除多列角毛藻。随着时间的推移,当与多列角毛藻一起孵育时,赤潮异弯藻的浓度逐渐增加。因此,通过摄食增加赤潮异弯藻的浓度可能会导致在更大体积中赤潮异弯藻细胞消除更多的多列角毛藻细胞。基于本研究的结果,计算得出,在 6 天内,约 200m 范围内的赤潮异弯藻的 1m 储备培养液在 4000 个细胞 ml 时可以去除所有多列角毛藻细胞。此外,通过光合作用维持赤潮异弯藻种群为赤潮异弯藻在未来赤潮斑块中消除多列角毛藻细胞做好了准备。此外,将赤潮异弯藻在 2000 个细胞 ml 的浓度下与幼龄橄榄石斑鱼 Paralichthys olivaceus 孵育 3 天不会导致鱼类死亡。因此,本研究开发的方法是控制多列角毛藻种群的一种安全有效的方法,并且可以很容易地应用于陆地上的水产养殖水箱。