Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
Sci Total Environ. 2020 Jun 15;721:137725. doi: 10.1016/j.scitotenv.2020.137725. Epub 2020 Mar 6.
Harmful algal blooms (HABs) of Cochlodinium (aka Margalefidinium) polykrikoides cause huge economic and ecological damages and thus are considered environmental problems. Previous studies uncovered that the formation and collapse of phytoplankton blooms could be closely related to their associated microbes although their roles in C. polykrikoides bloom have not been elucidated yet. To explore the potential interactions between C. polykrikoides and other microbes (archaea, bacteria, and phytoplankton), we collected water samples in the free-living (FL) (0.22 to 3 μm), nanoparticle-associated (NP) (3 to 20 μm), and microparticle-associated (MP) (>20 μm) fractions when C. polykrikoides blooms occurred from July to August in 2016, 2017, and 2018 in the South Sea of Korea. The microbial composition of the C. polykrikoides-associated microbial cluster (Module I) significantly differed from those of other modules associated with Alexandrium, Chaetoceros or Chattonella. Over half of the interspecies interactions in Module I occurred within the module. That is, specific microbial clusters were associated with the C. polykrikoides bloom. Structural equation modeling (SEM) further confirmed the stronger effects of Module I on C. polykrikoides blooms compared to environmental factors. Among the operational taxonomic units (OTUs) directly correlated with C. polykrikoides, Marine Group I was presumed to supply vitamin B, the essential element for C. polykrikoides growth, while the potential fish pathogens (Micrococcaceae and Piscirickettsiaceae) could contribute to the massive fish death together with C. polykrikoides itself. In addition, the zoospores of Syndiniales, a parasitoid to dinoflagellates, might be related to the sudden collapse of C. polykrikoides blooms. These microbial groups also contributed to significant alterations of the local microbial community structures. Collectively, network analysis and SEM revealed that the C. polykrikoides bloom is concomitant with distinct microbial communities, contributing to the rise and fall of the bloom, and finally determining the local microbial community structures.
多甲藻(又名Margalefidinium)赤潮造成了巨大的经济和生态损失,因此被视为环境问题。先前的研究表明,浮游植物水华的形成和崩溃可能与它们相关的微生物密切相关,尽管它们在多甲藻水华中的作用尚未阐明。为了探索多甲藻与其他微生物(古菌、细菌和浮游植物)之间的潜在相互作用,我们在 2016 年、2017 年和 2018 年 7 月至 8 月多甲藻水华期间,收集了南海自由生活(FL)(0.22 至 3 μm)、纳米颗粒相关(NP)(3 至 20 μm)和微颗粒相关(MP)(>20 μm)水华样本。多甲藻相关微生物簇(模块 I)的微生物组成与亚历山大藻、角毛藻或膝沟藻相关的其他模块显著不同。模块 I 中超过一半的种间相互作用发生在模块内。也就是说,特定的微生物簇与多甲藻水华有关。结构方程模型(SEM)进一步证实,与环境因素相比,模块 I 对多甲藻水华的影响更强。在与多甲藻直接相关的操作分类单元(OTU)中,海洋群 I 被认为提供维生素 B,这是多甲藻生长所必需的元素,而潜在的鱼类病原体(微球菌科和鱼立克次体科)可能与多甲藻本身一起导致大量鱼类死亡。此外, Syndiniales 的游动孢子,一种对甲藻的寄生生物,可能与多甲藻水华的突然崩溃有关。这些微生物群也导致了当地微生物群落结构的显著变化。总的来说,网络分析和 SEM 表明,多甲藻水华伴随着独特的微生物群落,促进了水华的兴衰,并最终决定了当地的微生物群落结构。