Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA.
Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA.
Curr Biol. 2017 Apr 24;27(8):1213-1220. doi: 10.1016/j.cub.2017.03.007. Epub 2017 Mar 30.
The mitotic checkpoint is a cellular safeguard that prevents chromosome missegregation in eukaryotic cells [1, 2]. Suboptimal functioning may foster chromosome missegregation in cancer cells [3]. Checkpoint signaling produces the "mitotic checkpoint complex" (MCC), which prevents anaphase by targeting Cdc20, the activator of the anaphase-promoting complex/cyclosome (APC/C). Recent biochemical and structural studies revealed that the human MCC binds two Cdc20 molecules, one (Cdc20) through well-characterized, cooperative binding to Mad2 and Mad3/BubR1 (forming the "core MCC") and the other one (Cdc20) through additional binding sequences in Mad3/BubR1 [4-6]. Here, we dissect the different functionality of these sites in vivo. We show in fission yeast that, at low Cdc20 concentrations, Cdc20 binding is sufficient for checkpoint activity and Cdc20 binding becomes dispensable. Cdc20 binding is mediated by the conserved Mad3 ABBA-KEN2-ABBA motif [7, 8], which we find additionally required for binding of the MCC to the APC/C and for MCC disassembly. Strikingly, deletion of the APC/C subunit Apc15 mimics mutations in this motif, revealing a shared function. This function of Apc15 may be masked in human cells by independent mediators of MCC-APC/C binding. Our data provide important in vivo support for the recent structure-based models and functionally dissect three elements of Cdc20 inhibition: (1) sequestration of Cdc20 in the core MCC, sufficient at low Cdc20 concentrations; (2) inhibition of a second Cdc20 through the Mad3 C terminus, independent of Mad2 binding to this Cdc20 molecule; and (3) occupancy of the APC/C with full MCC, where Mad3 and Apc15 are involved.
有丝分裂检查点是一种细胞保护机制,可防止真核细胞中的染色体错误分离[1,2]。功能不佳可能会促进癌细胞中的染色体错误分离[3]。检查点信号产生“有丝分裂检查点复合物”(MCC),通过靶向 APC/C 的激活子 Cdc20 来阻止后期[4-6]。最近的生化和结构研究揭示,人类 MCC 结合两个 Cdc20 分子,一个(Cdc20)通过与 Mad2 和 Mad3/BubR1 的特征性、协作结合(形成“核心 MCC”),另一个(Cdc20)通过 Mad3/BubR1 中的额外结合序列[4-6]。在这里,我们在体内剖析这些位点的不同功能。我们在裂殖酵母中表明,在低 Cdc20 浓度下,Cdc20 结合足以发挥检查点活性,并且 Cdc20 结合变得可有可无。Cdc20 结合由保守的 Mad3 ABBA-KEN2-ABBA 基序介导[7,8],我们发现该基序还需要 MCC 与 APC/C 的结合和 MCC 的解体。引人注目的是,APC/C 亚基 Apc15 的缺失模拟了该基序中的突变,揭示了一个共同的功能。在人类细胞中,Apc15 的这种功能可能被 MCC-APC/C 结合的独立介质掩盖。我们的数据为最近基于结构的模型提供了重要的体内支持,并从三个方面对 Cdc20 抑制进行功能剖析:(1)在低 Cdc20 浓度下,核心 MCC 中 Cdc20 的隔离;(2)Mad3 C 端对第二个 Cdc20 的抑制,与 Mad2 与该 Cdc20 分子的结合无关;(3)MCC 与 APC/C 的充分占据,其中 Mad3 和 Apc15 参与其中。