Center for Brain Repair and Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA.
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
Biochim Biophys Acta Mol Basis Dis. 2017 Jun;1863(6):1171-1182. doi: 10.1016/j.bbadis.2017.03.024. Epub 2017 Mar 31.
Upstream open reading frames (uORFs) have emerged as major post-transcriptional regulatory elements in eukaryotic species. In general, uORFs are initiated by a translation start codon within the 5' untranslated region of a gene (upstream ATG; uATG), and they are negatively correlated with translational efficiency. In addition to their translational regulatory role, some uORFs can code for biologically active short peptides. The importance of uATGs/uORFs is further underscored by human diseases associated with single nucleotide polymorphisms (SNPs), which disrupt existing uORFs or introduce novel uORFs. Although several functional proteins translated from naturally occurring uORFs have been described, the coding potential of uORFs created by SNPs has been ignored because of the a priori assumption that these proteins are short-lived with no likely impact on protein homeostasis. Thus, studies on SNP-created uORFs are limited to their translational effects, leaving unexplored the potential cellular consequences of a SNP/uORF-encoded protein. Here, we investigate functionality of a uATG/uORF introduced by a +142C>T SNP within the GCH1 gene and associated with a familial form of DOPA Responsive Dystonia. We report that the +142C>T SNP represses GCH1 translation, and introduces a short, frame shifted uORF that encodes a 73-amino acid peptide. This peptide is localized within the nucleus and compromises cell viability upon proteasome inhibition. Our work extends the list of uATG/uORF associated diseases and advances research on peptides translated from SNP-introduced uORFs, a neglected component of the proteome.
上游开放阅读框 (uORFs) 已成为真核生物中主要的转录后调控元件。一般来说,uORFs 是由基因 5' 非翻译区 (UTR) 中的翻译起始密码子 (上游 ATG; uATG) 起始的,并且与翻译效率呈负相关。除了其翻译调控作用外,一些 uORFs 可以编码具有生物活性的短肽。uATGs/uORFs 的重要性进一步强调了与单核苷酸多态性 (SNP) 相关的人类疾病,这些 SNP 破坏了现有的 uORFs 或引入了新的 uORFs。尽管已经描述了几种从天然存在的 uORFs 翻译的功能性蛋白质,但由于先前的假设,即这些蛋白质是短命的,不太可能对蛋白质平衡产生影响,因此忽略了 SNP 产生的 uORFs 的编码潜力。因此,对 SNP 产生的 uORFs 的研究仅限于其翻译效应,而 SNP/uORF 编码蛋白的潜在细胞后果仍未得到探索。在这里,我们研究了 GCH1 基因内由 +142C>T SNP 引入的 uATG/uORF 的功能,该 SNP 与家族性多巴反应性肌张力障碍有关。我们报告说,+142C>T SNP 抑制了 GCH1 的翻译,并引入了一个短的、移码的 uORF,该 uORF 编码一个 73 个氨基酸的肽。该肽位于核内,在蛋白酶体抑制时会损害细胞活力。我们的工作扩展了与 uATG/uORF 相关疾病的列表,并推进了对 SNP 引入的 uORFs 翻译的肽的研究,这是蛋白质组中被忽视的一个组成部分。