Suppr超能文献

多光谱图像融合增强对人体效率的影响。

The effect of multispectral image fusion enhancement on human efficiency.

作者信息

Bittner Jennifer L, Schill M Trent, Mohd-Zaid Fairul, Blaha Leslie M

机构信息

Air Force Research Laboratory, 711 HPW/RHCV, 2255 H Street, Wright-Patterson AFB, Dayton, 45433-7022 OH USA.

Ball Aerospace & Technologies Corp., 2875 Presidential DriveFairborn, 45324 OH USA.

出版信息

Cogn Res Princ Implic. 2017;2(1):19. doi: 10.1186/s41235-016-0045-0. Epub 2017 Mar 20.

Abstract

The visual system can be highly influenced by changes to visual presentation. Thus, numerous techniques have been developed to augment imagery in an attempt to improve human perception. The current paper examines the potential impact of one such enhancement, multispectral image fusion, where imagery captured in varying spectral bands (e.g., visible, thermal, night vision) is algorithmically combined to produce an output to strengthen visual perception. We employ ideal observer analysis over a series of experimental conditions to (1) establish a framework for testing the impact of image fusion over the varying aspects surrounding its implementation (e.g., stimulus content, task) and (2) examine the effectiveness of fusion on human information processing efficiency in a basic application. We used a set of rotated Landolt C images captured with a number of individual sensor cameras and combined across seven traditional fusion algorithms (e.g., Laplacian pyramid, principal component analysis, averaging) in a 1-of-8 orientation task. We found that, contrary to the idea of fused imagery always producing a greater impact on perception, single-band imagery can be just as influential. Additionally, efficiency data were shown to fluctuate based on sensor combination instead of fusion algorithm, suggesting the need for examining multiple factors to determine the success of image fusion. Our use of ideal observer analysis, a popular technique from the vision sciences, provides not only a standard for testing fusion in direct relation to the visual system but also allows for comparable examination of fusion across its associated problem space of application.

摘要

视觉系统会受到视觉呈现变化的极大影响。因此,人们开发了许多技术来增强图像,以试图改善人类的感知。本文研究了一种这样的增强技术——多光谱图像融合的潜在影响,即在不同光谱波段(如可见光、热成像、夜视)中捕获的图像通过算法进行组合,以产生增强视觉感知的输出。我们在一系列实验条件下采用理想观察者分析,以(1)建立一个框架来测试图像融合在其实施的不同方面(如刺激内容、任务)的影响,以及(2)在一个基本应用中检验融合对人类信息处理效率的有效性。我们使用了一组用多个单独的传感器相机捕获的旋转的兰道尔特C图像,并在八选一方向任务中通过七种传统融合算法(如拉普拉斯金字塔、主成分分析、平均法)进行组合。我们发现,与融合图像总是对感知产生更大影响的观点相反,单波段图像也可能同样有影响力。此外,效率数据显示会根据传感器组合而波动,而不是基于融合算法,这表明需要考虑多个因素来确定图像融合的成功与否。我们使用理想观察者分析这一视觉科学领域常用的技术,不仅为直接与视觉系统相关的融合测试提供了一个标准,还允许在其相关应用问题空间中对融合进行可比的检验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/986d/6091263/bba45746b8f1/41235_2016_45_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验