Suppr超能文献

通过机器学习和遗传编程提高抗菌肽的识别能力及靶点选择性

Improving Recognition of Antimicrobial Peptides and Target Selectivity through Machine Learning and Genetic Programming.

作者信息

Veltri Daniel, Kamath Uday, Shehu Amarda

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2017 Mar-Apr;14(2):300-313. doi: 10.1109/TCBB.2015.2462364.

Abstract

Growing bacterial resistance to antibiotics is spurring research on utilizing naturally-occurring antimicrobial peptides (AMPs) as templates for novel drug design. While experimentalists mainly focus on systematic point mutations to measure the effect on antibacterial activity, the computational community seeks to understand what determines such activity in a machine learning setting. The latter seeks to identify the biological signals or features that govern activity. In this paper, we advance research in this direction through a novel method that constructs and selects complex sequence-based features which capture information about distal patterns within a peptide. Comparative analysis with state-of-the-art methods in AMP recognition reveals our method is not only among the top performers, but it also provides transparent summarizations of antibacterial activity at the sequence level. Moreover, this paper demonstrates for the first time the capability not only to recognize that a peptide is an AMP or not but also to predict its target selectivity based on models of activity against only Gram-positive, only Gram-negative, or both types of bacteria. The work described in this paper is a step forward in computational research seeking to facilitate AMP design or modification in the wet laboratory.

摘要

细菌对抗生素的耐药性不断增强,这促使人们开展研究,利用天然存在的抗菌肽(AMPs)作为新型药物设计的模板。实验人员主要专注于系统性点突变,以测量其对抗菌活性的影响,而计算领域的研究人员则试图在机器学习环境中理解决定这种活性的因素。后者试图识别控制活性的生物信号或特征。在本文中,我们通过一种新颖的方法推进了这一方向的研究,该方法构建并选择基于复杂序列的特征,这些特征能够捕获肽内远端模式的信息。与AMP识别领域的现有方法进行比较分析后发现,我们的方法不仅是表现最佳的方法之一,而且还能在序列水平上提供对抗菌活性的透明总结。此外,本文首次展示了不仅能够识别一种肽是否为AMP,还能基于仅针对革兰氏阳性菌、仅针对革兰氏阴性菌或针对两种类型细菌的活性模型来预测其靶标选择性的能力。本文所述的工作是计算研究向前迈出的一步,旨在促进湿实验室中的AMP设计或修饰。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验